这篇是阅读PyTorch代码整理的笔记,方便以后翻阅。这里主要是想知道PyTorch的operators的定义都是怎么组织的,以及如果要添加新的operator的话,该怎么做。__init__.py跟setup.py比较不错的着手点是torch这个模块的__init__.py跟安装用的setup.py。 把两个文件都浏览一遍有个大体的概念。然后在__init__.py里面搜__all__,通过观
转载 2024-06-09 10:42:50
74阅读
Pytorch官方实现首先由引入相关的库import torch import torch.nn as nn from .utils import load_state_dict_from_url定义了一个可以从外部引用的字符串列表:__all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn
转载 2023-09-20 16:43:06
149阅读
VGGVGG是牛津大学的视觉几何组(Visual Geometry Group)在2015年的论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》上提出的一种结构,在当年(2014年)的ImageNet分类挑战取得了第二名的好成绩(第一名是GoogleNet)。主要工作是证明了通过使用非常小的卷积层(3x3)来
一.VGG 网络参数如下: VGG网络及使用的图像输入是3x224x224的图像。二.VGG 网络搭建如下(学习于B 站UP主:霹雳吧啦Wz,良心推荐): 1.阅读代码之前了解下conv2d的计算,其实nn.Linear,nn.MaxPool2d的输出的计算都是使用以下公式:VGG16的输入是3x224x224,进入全连接层的输入是512x7x7,各个层次的输入输出,建议手算一遍。import
转载 2024-01-25 20:02:42
94阅读
目录ResNet-18网络结构简图ResNet-18的代码结构残差块结构ResNet类构造方法和forward_make_layer方法完整的ResNet-18结构图 使用的resnet-18的源代码来源于 PyTorch1.0, torchvision0.2.2 ResNet-18网络结构简图ResNet(Residual Neural Network)来源于微软研究院的Kaiming He
转载 2023-11-09 06:05:09
192阅读
目录1.简介 2.数据集3.模型初始化4.训练参数5.训练&验证6.保存&加载模型1.简介 这篇文章主要是针对刚入门pytorch的小伙伴,会带大家完整走一遍使用神经网络训练的流程,以及介绍一些pytorch常用的函数。如果还未安装pytorch或者安装有困难,可以参考我的上一篇文章:Windows Anaconda精简安装cuda+pytorch+torchv
最近在复现经典cv论文的网络结构,经典的AlexNet,VGG等网络由于基本都是同源的。基本只是深度和预处理的代码不同,因此用Pytorch搭建起来很容易,到了RetinaNet,由于其将多个网络融合,代码和实验量较大(RetinaNet论文的实验量吓到我了,真、实验狂魔)复现起来较困难,因此选择了取github上下载大佬的代码来用。此帖记录了跑代码的过程和全程遇到问题的解决方案。一、项目链接我采
转载 2023-07-20 14:17:55
216阅读
本文代码基于 PyTorch 1.x 版本,需要用到以下包:import collections import os import shutil import tqdm import numpy as np import PIL.Image import torch import torchvision基础配置检查 PyTorch 版本torch.__version__
简述由于科技论文老师要求阅读Gans论文并在网上找到类似的代码来学习。 文章目录简述代码来源代码含义概览代码分段解释导入包:设置参数:给出标准数据:构建模型:构建优化器迭代细节画图全部代码:参考并学习的链接 代码来源https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/406_GAN.py代码含义概
转载 2024-04-30 02:20:12
115阅读
本文分享手动实现DCGAN生成动漫头像的Pytorch代码。简单来说,DCGAN(Deep Convolutional GAN)就是用全卷积代替了原始GAN的全连接结构,提升了GAN的训练稳定性和生成结果质量。我使用的数据集,5W张96×96的动漫头像。import torch import torch.nn as nn from torch.utils.data.dataloader impor
目录1、PyTorch2、PyTorch常用的工具包3、PyTorch特点4、PyTorch不足之处 今天给大家讲解一下PyTorch深度学习框架的一些基础知识,希望对大家理解PyTorch有一定的帮助!1、PyTorchPyTorch是一个基于Torch的Python机器学习框架。它是由Facebook的人工智能研究小组在2016年开发的,解决了Torch因为使用Lua编程语言普及度不高的问题,
Resnet的pytorch官方实现代码解读 目录Resnet的pytorch官方实现代码解读前言概述34层网络结构的“平原”网络与“残差”网络的结构图对比不同结构的resnet的网络架构设计resnet代码细节分析 前言pytorch官方给出了现在的常见的经典网络的torch版本实现。仔细看看这些网络结构的实现,可以发现官方给出的代码比较精简,大部分致力于实现最朴素结构,没有用很多的技巧,在网络
转载 2023-12-18 19:17:24
97阅读
在本篇博文中,我将深入探讨如何使用 PyTorch 进行深度学习任务,包括一些代码示例和设计结构。PyTorch 是一个开源的深度学习框架,其灵活性和高效性使其在研究和工业界获得了广泛应用。本文的结构将包括协议背景、抓包方法、报文结构、交互过程、字段解析和异常检测。在每个部分中,我将借助不同的图表和示例代码来进行清晰的展示。 ## 协议背景 在深入 PyTorch 代码之前,我们首先需要了解其
原创 5月前
0阅读
Resnext就是一种典型的混合模型,有基础的inception+resnet组合而成,通过学习这个模型,你也可以通过以往学习的模型组合,我们每次去学习掌握一个模型的精髓就是为了融合创造新的模型。 第一步先了解下图的含义 这是resnext的三种结构,这三种结构是等价的,但是©这种结构代码容易构造,所以代码以(c)的讲解。resnext的本质在与gruops分组卷积,在之前的mobilenet网络
引言文通过代码实现了AlexNet算法,使用的是pytorch框架,版本为1.7.1。另外本专栏的所有算法都有对应的Libtorch版本(Libtorch版本的AlexNet地址),算法原理本文不做过多阐述。本文针对小白对代码以及相关函数进行讲解,建议配合代码进行阅读,代码中我进行了详细的注释,因此读者可以更加容易理解代码的含义,本文只展示了部分代码,全部代码可以通过GitHub下载。本文使用的数
循环神经网络RNN和长短期记忆网络LSTM的原理,许多文章都讲的很清晰,我就不到处抄了…… 听说实现车牌识别还挺简单的,来尝试一下叭~首先找车牌图片,虽然有一些生成车牌的软件,但是一般不能批量生成,而且我们还要拿到标签进行训练,好叭,自己先写一个看看。软件生成的车牌: 我用最简单的代码生成的车牌: emmm,怎么说呢,假得很有层次感。 不管了,先把效果跑出来再说,真实数据集反正咱也没办法,让老板花
目录0.图像超分辨率1.SRCNN介绍训练过程损失函数 个人对SRCNN训练过程的理解2.实验常见问题和部分解读1. torch.utils.data.dataloader中DataLoader函数的用法2.SRCNN图像颜色空间转换原因以及方法?3. model.parameters()与model.state_dict()的区别4. .item()函数的用法?5.最后的测试过程步骤?
PointNet++的pytorch实现代码阅读1. 功能函数文件1.1 square_distance函数1.2 farthest_point_sample函数1.3 index_points函数1.4 query_ball_point函数1.5 Sampling + Grouping1.6 SetAbstraction层1.7 FeaturePropagation层2. 模型主文件2.1 C
转载 2023-12-18 12:05:21
102阅读
本文意在飞速使用LSTM,在数学建模中能更加快速。数据输入支持一维数据(单变量预测)或者为二维数据(多变量同时预测)。包含置信区间的计算。推荐使用 jupyter,因为可以保存训练步骤,重写画图代码更加便捷。完整代码下载链接数据输入 apidef data_basic(): """2023美赛C:https://www.pancake2021.work/wp-content/uploads
文章目录GAN代码实操导包导入参数+建立输出文件夹设定cuda加载数据定义模型并将模型移到device上做DataParallel数据并行定义损失函数和优化器反归一化开始训练在训练过程中动态自定义进度条显示信息网络优化(for循环内部)训练成果展示数据并行化用单卡运行用多卡做数据并行DataParallel GAN代码实操GAN的理论部分已经讲过,下面是代码实战。可以生成MNIST数据集的手写数
  • 1
  • 2
  • 3
  • 4
  • 5