信号处理,可以理解为对信号进行某种加工或变换来达到削弱信号中的多余内容、滤除混杂的噪声和干扰、将信号变换成容易分析与识别的形式,便于估计和选择它的特征参量等目的。       快速傅里叶变换(FFT)是信号处理的重要组成部分,是离散傅里叶变换(DFT)的快速算法,可以将离散信号从时域变换到频域,因为很多信
前言:本人的课题是关于EIT采集系统设计,所谓的EIT,简单的说就是往人体注入特定频率的电流信号,通过采集反馈的电压信号,进而使用成像算法重构人体内部的阻抗分布。由于采集到的电压包含其它频率的热噪声,为了只保留注入频率的信号成分,需要对采集到的电压信号进行FFT处理。在本文应用中,FFT相当于一个带通滤波器,用于获取指定频率的信号信息。关于快速傅里叶变化这里不做过多的介绍,具体可参考别人写的博客:
在这一篇博文中,我将详细探讨如何使用 Java 实现快速傅里叶变换(FFT)算法来进行频域分析,帮助我们更好地理解信号处理中的关键过程。 ## 背景描述 在现代信号处理领域,傅里叶变换是将时域信号转化为频域信号的重要工具。快速傅里叶变换(FFT)算法通过高效的计算方法,显著降低了傅里叶变换的时间复杂度,使得在实时信号处理上变得可行。为了更清晰地展示整个流程,下面我提供了一个流程图: ```m
假设采样频率为 1M , 采样点数为1024 ,那么横坐标第N个点代表的频率 X(N) = (1M / 1024) * NFFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。  &nbsp
在STM32F1系列单片机上面实现FFT最近需要做一台基于stm32的示波器。如果测量信号参数,用单片机上面一些传统的方法局限性还是比较大,就开始琢磨直接上FFT。本文将以一个实例来介绍如何使用STM32提供的DSP库函数进行FFT。开始是下载stm32的DSP库,提供一个下载地址: 链接:https://pan.baidu.com/s/1M28W7WXNsO3QVfkZunh7rg 提取码:s7
先上代码:import numpy as np import matplotlib.pyplot as plt fs=10 ts=1/fs t=np.arange(-5,5,ts)#生成时间序列,采样间隔0.1s k=np.arange(t.size)#DFT的自变量 N=t.size#DFT的点数量 x=np.zeros_like(t)#生成一个与t相同结构,内容为0的np.arr
转载 2023-08-18 16:08:51
336阅读
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视
转载 2023-07-17 21:17:17
150阅读
一:FFT变换fft变换其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。   和傅立叶变换算法对应的是反傅立叶变换算
1、流程大体流程如下,无论图像、声音、ADC数据都是如下流程: (1)将原信号进行FFT; (2)将进行FFT得到的数据去掉需要滤波的频率; (3)进行FFT逆变换得到信号数据;2、算法仿真2.1 生成数据:#采样点选择1400个,因为设置的信号频率分量最高为600Hz,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400Hz(即一秒内有1400个采样点) x=np.linsp
刚刚开始使用numpy软件包并以简单的任务启动它来计算输入信号的FFT.这是代码:import numpy as np import matplotlib.pyplot as plt #Some constants L = 128 p = 2 X = 20 x = np.arange(-X/2,X/2,X/L) fft_x = np.linspace(0,128,128, True) fwhl =
1. 快速傅里叶变换(FFT) 原始二维傅里叶变换公式:np工具箱中有fft2函数可以对图像做二维快速傅里叶变换(不断分解成更小的、更容易的小蝶形变换替换大变换),但是要让输出的频谱图更有视觉效果,需要把四个角的中心点移动到矩阵中心,并做对数变换代码:import numpy as np import cv2 import matplotlib.pyplot as plt
对于通信和信号领域的同学来说,傅里叶变换、信号采样定理一定不陌生。本文主要对傅里叶变换中涉及的时关系对应进行说明,并仿真了FFT。主要分为三个部分:1.时域信号仿真由于计算机只能计算离散的数值,所以即使我们在仿真时域信号的时候,也是离散时域下的信号。可以理解为对时域采样过后的信号。采样频率为fs,采样间隔即时域间隔即时域分辨率为dt=1/fs。故t不是连续的,它是有最小间隔的,是dt。产生时域t
上一章介绍了利用STM32的TIM的捕获功能实现频率测量的方法,但测量误差受被信号频率的影响,不适合测量频率变化较大的 。本章将介绍等精度的方法以及STM32的实现。STM32硬件电路板及仿真器(以STM32F072C8单片机为例)Keil v5以上版本(MDK-ARM)基本原理首先看一张图:传统的方式,闸门放时间是固定的,闸门时间内被信号的计数个数Nx不一定是整数个,因此会
原创 2022-10-17 10:57:50
1789阅读
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号 分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。     虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知
转载 2024-01-11 23:22:57
154阅读
刚刚开始使用numpy软件包并以简单的任务启动它来计算输入信号的FFT.这是代码:import numpy as np import matplotlib.pyplot as plt #Some constants L = 128 p = 2 X = 20 x = np.arange(-X/2,X/2,X/L) fft_x = np.linspace(0,128,128, True) fwhl =
在做超分辨重建任务时,需要对重建图像做出评价,主要是人眼感官上的评价。这就需要我们从空域和频域两个方面对图像进行评价。下面给给出python实现的结果,并给出相应的代码。图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:          &nb
import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline首先读入这次需要使用的图像img = cv2.imread('apple.jpg',0) #直接读为灰度图像 plt.imshow(img,cmap="gray") plt.axis("off") plt.show()使用numpy带的ff
fft()函数简单到发指,一般使用时就两个参数fft(nparray,n),n还可以缺省。上代码:import numpy as np from scipy.fftpack import fft,ifft fft_y=fft(y) print(fft_y)执行结果:[180444.84 -0.j -1764.15187386-6325.24578909j
1、Caffe的卷积操作时间主要在矩阵乘法,假设一个m*n卷积核,且输入通道数为1,输出特征图大小为h*w,则乘法个数m*n*h*w,这里的优化仅限于对矩阵的乘法优化,因此,只要选择适合的矩阵计算库就可以了。2、若使用FFT来计算图像卷积。其主要步骤如下。假设输入图像的大小为len=h*w,卷积核大小k_len=m*n;通常len>>k_len;对输入图像A做FFT,其算法的时间复杂度
转载 2023-07-20 23:07:16
67阅读
文章目录FFT运算应用时的要点FFT运算前数据长度周期情况采样频率数据补零FFT运算中FFT运算后幅值频率相位基于Python的通用化FFT计算函数附录:术语参考相干采样和非相干采样分贝dB的定义 本文记录了如何使用scipy提供的FFT函数,实现快速傅里叶变换的实际例程。关于FFT的基本理论,在正文中不会特别介绍,可以根据读者要求,针对特别的知识点在附录中加以说明,本文重点在于介绍如何解决实际
  • 1
  • 2
  • 3
  • 4
  • 5