前面讲的各个语义相似性计算的模型,基本都是双塔的结构。双塔结构主要优点是相似性计算快速,这里指的快速不是模型单个数据的推理速度,而是在大量问句场景下的计算,比如相似问句的召回场景。因为双塔模型得到的其实是单个问句的表示,相似性的计算只是在最后做了简单的计算,最耗时的问句表示操作可以离线完成。而cross
作者:刘子仪paper:tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection分析语义相似一直都是自然语言处理中的一个基础任务,在很多场景下例如问答系统,抄袭检测都有应用。这篇文章针对特定领域下的语义相似比较提出了结合topic models和BERT的tBERT模型。模型架构很简单,topic模
用于自然语言推理的增强型 LSTMgithub: https://github.com/daiyizheng/shortTextMatch/blob/master/src/DL_model/classic_models/models/ESIM.py本文作者提出了基于LSTM的ESIM模型,该模型优于之前所有的模型。ESMI主要通过链式LSTM(作者也提到了Tree LSTM结构的模型HIM,但是不
有两种思路:采用ad-hoc检索方式1.首先获取原有的数据集qa-pairs2.用户提出的问题,进行预处理后,先从数据集中获取,相关的10个预选答案,可以采用Lucene全文检索方法。3.之后采用深度文本匹配模型(drmm),从10个预选答案中选出分数最高的答案作为最终的答案。参考:https://www.chedong.com/tech/lucene.htmlA Deep Relevance M
文本相似在问答系统中有很重要的应用,如基于知识的问答系统(Knowledge-based QA),基于文档的问答系统(Documen-based QA),以及基于FAQ的问答系统(Community-QA)等。像 对于问题的内容,需要进行相似匹配,从而选择出与问题最接近,同时最合理的答案。本节介绍 基于bm25算法。    直接调用rank_bm25:im
1. ERNIE简介这里的ERNIE(包括后面介绍的都是指的ERNIE1.0)是指百提出的知识增强的语义表示模型 ERNIE(Enhanced Representation from kNowledge IntEgration),而且发布了基于 PaddlePaddle 的开源代码与模型 。 ERNIE在结构上和BERT是一样的,只是改进了BERT的预训练阶段,增加了实体等先验知识,而且在大型中
短文本语义匹配/文本相似框架(SimilarityNet, SimNet),基于bow_pairwise模式及框架原理介绍 一、简介短文本语义匹配(SimilarityNet, SimNet)是百一个计算短文本相似的框架,可以根据用户输入的两个文本,计算出相似得分。1.1 示例句子1 句子2 相似 车头 如何 放置 车牌 前 牌照
任务描述 问句匹配是自然语言处理的最基本任务之一,是自动问答,聊天机器人,信息检索,机器翻译等各种自然语言处理任务基础。问句匹配的主要目的是判断两个问句之间的语义是否等价。判别标准主要根据主句(即提问者)所蕴含的意图来判断两个语句是否等价,而不直接判断两个语句是否表达相同的语义。因此,其核心是语句的意图匹配。由于来源于真实问答语料库,该任务更加接近于智能医疗助手等自然语言处理任务的实际需
现有的文本语义匹配模型 a. Cross-encoder类模型(例如 BERT)将两段文本concat,通过BERT直接输出相似;优点是简单,可以实现文本深交互,缺点是由于计算量太大,无法在召回阶段使用; b. Bi-encoder类模型(例如 DPR)将两段文本分别通过模型获得文本表征,最后再通过一个相关性判别函数计算两个文本表征之间的相似;因为在最后的相关性判别函数时才发生交互,所以可以离
转载 2023-08-13 21:56:17
279阅读
 1. 自然地使用[CLS]2. cosine similairity3. 长短文本的区别4. sentence/word embedding5. siamese network 方式  1. 自然地使用[CLS]BERT可以很好的解决sentence-level的建模问题,它包含叫做Next Sentence Prediction的预训练任务,即成对句子的sente
基于预训练模型 ERNIE-Gram 实现语义匹配本案例介绍 NLP 最基本的任务类型之一 —— 文本语义匹配,并且基于 PaddleNLP 使用百开源的预训练模型 ERNIE1.0 为基础训练效果优异的语义匹配模型,来判断 2 个文本语义是否相同。一、 背景介绍文本语义匹配任务,简单来说就是给定两段文本的相,让模型来判断两段文本是不是语义相似。在本案例中以权威的语义匹配数据集 LCQMC 为例
写在开始之前:语义即联系。以下部分来自于我在公司内部的分享。一、相关概念在学术上,大致有以下三个概念和文本相似相关:Semantic Textual Similarity(文本语义相似):5分表示非常相似,0分表示非常不相似。Paraphrase Identification(复述判定):1表示是复述,0表示不是复述。Natural Language Inference(自然语言推断):C表示
知识图谱与语义相似的关系   如果本文观点有不对的地方,欢迎指正! author:佟学强 开场白:对于事物的理解,一般分3个层次:①看山是山,看水是水②看山不是山,看水不是水③看山是山,看水是水。对AI和nlp的理解,同样会有这三个层次。比如,刚毕业的硕士或者毕业1~2年的,会热衷于研究GAN,seq2seq,甚至包括nlp刚起步的一些公司。这类群体对
转载 2023-08-27 21:46:03
125阅读
1. 背景以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似,这里主要体现在两个方面:召回和排序。在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如"从北京到上海的机票"与"携程网"的相似性、"快递软件"与"菜鸟裹裹"的相似性。在排序时,一些细微的语言变化往往带来巨大的语义变化,如"小宝宝生病怎么办"和"狗宝宝生病怎么办"、"深度学习"和"学习深
一、简介论文:Learning Deep Structured Semantic Models for Web Search using Clickthrough Data微软13年提出的计算文本相似的深度学习模型,核心思想是将query和doc映射到到共同维度的语义空间中,通过最大化query和doc语义向量之间的余弦相似,从而训练得到隐含语义模型,达到检索的目的。DSSM有很广泛的应用,比
每天给你送来NLP技术干货!作者 | 周俊贤    整理 | NewBeeNLP这篇跟大家讨论相关的技术,主要包括BERT-avg、BERT-Whitening、SBERT、SimCES四个。为了方便,还是从狭义的语义匹配的场景出发,输入一对句子,输出这对句子相似性(回归,0~1)。BERT-avgBERT-avg做法
目录文本的表示距离度量要计算文本的相似,要解决两个问题:首先,需要选择一个文本的表示方式。其次,需要选择一个衡量文本的相似的距离度量。文本的表示自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些文本符号数学化。词向量是用一个向量来表示某个词的方法。下面介绍几种常见的词向量。SOW 词集模型忽略文本词序、语法和句法,仅仅记录某个词是否在文本中出现。具体地,根据语料库获得一个
  在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。  为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3,
【前沿重器】全新栏目,本栏目主要和大家一起讨论近期自己学习的心得和体会,与大家一起成长。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。往期回顾心法利器[8] | 模型热更新小记心法利器[9] | 算法项目从0到1孵化过程心法利器[10] | 算法项目从1到N的进化心法利器[11] | 任务方案思考:文本分类篇心法利器[12] | 任务方案思考:序列标注(NER)篇0 小系列初衷自己接触的项目
©作者 | 崔文谦单位 | 北京邮电大学研究方向 | 医学自然语言处理本文旨在帮大家快速了解文本语义相似领域的研究脉络和进展,其中包含了本人总结的文本语义相似任务的处理步骤,文本相似模型发展历程,相关数据集,以及重要论文分享。文本相似任务处理步骤通过该领域的大量论文阅读,我认为处理文本相似任务时可以分为一下三个步骤:预处理:如数据清洗等。此步骤旨在对文本做一些规范化操作,筛选有
  • 1
  • 2
  • 3
  • 4
  • 5