1. 背景以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似,这里主要体现在两个方面:召回和排序。在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如"从北京到上海的机票"与"携程网"的相似性、"快递软件"与"菜鸟裹裹"的相似性。在排序时,一些细微的语言变化往往带来巨大的语义变化,如"小宝宝生病怎么办"和"狗宝宝生病怎么办"、"深度学习"和"学习深
# Python 中文语义相似匹配评分 在自然语言处理(NLP)领域,语义相似匹配是一个重要的任务。它的目标是评估两段文本在语义上的相似性。随着深度学习和预训练语言模型的发展,评估语义相似的方法变得更加高效和准确。本文将介绍如何使用 Python 进行中文语义相似匹配评分,并提供相应的代码示例。 ## 什么是语义相似语义相似是用来衡量两个词语或短语在意义上相似程度的指标。较高
原创 1月前
13阅读
写在开始之前:语义即联系。以下部分来自于我在公司内部的分享。一、相关概念在学术上,大致有以下三个概念和文本相似相关:Semantic Textual Similarity(文本语义相似):5分表示非常相似,0分表示非常不相似。Paraphrase Identification(复述判定):1表示是复述,0表示不是复述。Natural Language Inference(自然语言推断):C表示
作者:刘子仪paper:tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection分析语义相似一直都是自然语言处理中的一个基础任务,在很多场景下例如问答系统,抄袭检测都有应用。这篇文章针对特定领域下的语义相似比较提出了结合topic models和BERT的tBERT模型。模型架构很简单,topic模
短文本语义匹配/文本相似框架(SimilarityNet, SimNet),基于bow_pairwise模式及框架原理介绍 一、简介短文本语义匹配(SimilarityNet, SimNet)是百一个计算短文本相似的框架,可以根据用户输入的两个文本,计算出相似得分。1.1 示例句子1 句子2 相似 车头 如何 放置 车牌 前 牌照
1. ERNIE简介这里的ERNIE(包括后面介绍的都是指的ERNIE1.0)是指百提出的知识增强的语义表示模型 ERNIE(Enhanced Representation from kNowledge IntEgration),而且发布了基于 PaddlePaddle 的开源代码与模型 。 ERNIE在结构上和BERT是一样的,只是改进了BERT的预训练阶段,增加了实体等先验知识,而且在大型中
用于自然语言推理的增强型 LSTMgithub: https://github.com/daiyizheng/shortTextMatch/blob/master/src/DL_model/classic_models/models/ESIM.py本文作者提出了基于LSTM的ESIM模型,该模型优于之前所有的模型。ESMI主要通过链式LSTM(作者也提到了Tree LSTM结构的模型HIM,但是不
有两种思路:采用ad-hoc检索方式1.首先获取原有的数据集qa-pairs2.用户提出的问题,进行预处理后,先从数据集中获取,相关的10个预选答案,可以采用Lucene全文检索方法。3.之后采用深度文本匹配模型(drmm),从10个预选答案中选出分数最高的答案作为最终的答案。参考:https://www.chedong.com/tech/lucene.htmlA Deep Relevance M
文本相似在问答系统中有很重要的应用,如基于知识的问答系统(Knowledge-based QA),基于文档的问答系统(Documen-based QA),以及基于FAQ的问答系统(Community-QA)等。像 对于问题的内容,需要进行相似匹配,从而选择出与问题最接近,同时最合理的答案。本节介绍 基于bm25算法。    直接调用rank_bm25:im
环境设置:SentenceTransformertransformersSentenceTransformers Documentation — Sentence-Transformers documentation (sbert.net)Sentence Transformer是一个Python框架,用于句子、文本和图像嵌入Embedding。这个框架计算超过100种语言的句子或文本嵌入。然后,
任务描述 问句匹配是自然语言处理的最基本任务之一,是自动问答,聊天机器人,信息检索,机器翻译等各种自然语言处理任务基础。问句匹配的主要目的是判断两个问句之间的语义是否等价。判别标准主要根据主句(即提问者)所蕴含的意图来判断两个语句是否等价,而不直接判断两个语句是否表达相同的语义。因此,其核心是语句的意图匹配。由于来源于真实问答语料库,该任务更加接近于智能医疗助手等自然语言处理任务的实际需
 1. 自然地使用[CLS]2. cosine similairity3. 长短文本的区别4. sentence/word embedding5. siamese network 方式  1. 自然地使用[CLS]BERT可以很好的解决sentence-level的建模问题,它包含叫做Next Sentence Prediction的预训练任务,即成对句子的sente
现有的文本语义匹配模型 a. Cross-encoder类模型(例如 BERT)将两段文本concat,通过BERT直接输出相似;优点是简单,可以实现文本深交互,缺点是由于计算量太大,无法在召回阶段使用; b. Bi-encoder类模型(例如 DPR)将两段文本分别通过模型获得文本表征,最后再通过一个相关性判别函数计算两个文本表征之间的相似;因为在最后的相关性判别函数时才发生交互,所以可以离
转载 2023-08-13 21:56:17
279阅读
        前面讲的各个语义相似性计算的模型,基本都是双塔的结构。双塔结构主要优点是相似性计算快速,这里指的快速不是模型单个数据的推理速度,而是在大量问句场景下的计算,比如相似问句的召回场景。因为双塔模型得到的其实是单个问句的表示,相似性的计算只是在最后做了简单的计算,最耗时的问句表示操作可以离线完成。而cross
一、序言 文本匹配是自然语言处理中一个重要的基础问题,自然语言处理中的许多任务都可以抽象为文本匹配任务。例如网页搜索可抽象为网页同用户搜索 Query 的一个相关性匹配问题,自动问答可抽象为候选答案与问题的满足匹配问题,文本去重可以抽象为文本与文本的相似匹配问题。 传统的文本匹配技术如信息检索中的向量空间模型 VSM、BM25 等算法,主要解决词汇层面的匹配问题,或者
转载 10月前
255阅读
基于预训练模型 ERNIE-Gram 实现语义匹配本案例介绍 NLP 最基本的任务类型之一 —— 文本语义匹配,并且基于 PaddleNLP 使用百开源的预训练模型 ERNIE1.0 为基础训练效果优异的语义匹配模型,来判断 2 个文本语义是否相同。一、 背景介绍文本语义匹配任务,简单来说就是给定两段文本的相,让模型来判断两段文本是不是语义相似。在本案例中以权威的语义匹配数据集 LCQMC 为例
注:只挑选了干货部分进行翻译 目录前言1. 传统搜索1.1 Jaccard Similarity1.2 w-Shingling1.3 Levenshtein Distance2. 向量相似检索2.1 TF-IDF2.2 BM252.3 BERT 前言相似性搜索(Similarity search)是人工智能和机器学习中发展最快的领域之一。其核心是将相关信息片段匹配在一起的过程。相似性搜索是一个复
计算机对主观题的自动评阅准确与否,主要取决于其对文本相似的计算是否准确。由于文本相似计算在文档复制检查、信息检索和机器翻译等领域都有十分广泛的应用,所以,近年来有越来越多的学者致力于文本相似算法的研究。总体来看,文本相似的计算方法主要分为两大类:一类是基于统计学的计算方法,此种方法需要大规模的语料库,并且在计算时没有考虑文本的句子结构信息和语义信息,计算的结果有时会与人对自然语言的理解不相
基于《知网》的语义相似计算 python2.7 API本项目使用python语言实现根据义原树来计算词语之间的语义相似,并提供对应的 API。词语距离有两类常见的计算方法,一种是根据某种世界知识(Ontology)或分类体系(Taxonomy)来计算,一种利用大规模的语料库进行统计。本项目研究基于前者,通过人工处理,将词汇组织在多棵树结构中,树中每个节点表示一个“义原”(概念语义)。在一棵树中
1. 方法总结:1. A[SEP]B 2分类2.pretrain+finetuning3.数据扩充      A[SEP]B + B[SEP]A      基于传播      外部数据增强:伪标签,注意领域一致性     闭包数据增强4  添加底层特征finetune&
  • 1
  • 2
  • 3
  • 4
  • 5