论文: ASAPP-ASR: Multistream CNN and Self-Attentive SRU for SOTA Speech Recognition摘要: 两种新颖的神经网络架构Multistream CNN(声学模型),slef-Atten
提起深度学习的再次兴起,大家首先可能会想到2012年AlexNet在图像分类上的突破,但是最早深度学习的大规模应用发生在语音识别领域。自从2006年Geoffrey Hinton提出逐层的Pretraining之后,神经网络再次进入大家的视野。2009年Geoffrey Hinton和Deng Li把DNN用于声学模型建模,用于替代GMM,同时大家发现在训练数据足够的情况下Pretraining是
基于深度学习的中文语音识别系统框架本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字。声学模型使用了应用较为广泛的递归循环网络中的GRU-CTC的组合,除此之外还引入了科大讯飞提出的DFCNN深度全序列卷积神经网络,也将引入阿里的架构DFSMN。语言模型有传统n-gram模型和基于深度神经网络的CBHG网络结构,该结构是谷歌用于TTS
语音交互是基于语音输入的新一代交互模式,比较典型的应用场景是各类语音助手。本文整理了语音交互领域常用的4个术语,希望可以帮助大家更好地理解这门学科。1.语音合成标记语言(SSML)语音合成标记语言的英文全称是Speech Synthesis Markup Language,这是一种基于XML的标记语言,可让开发人员指定如何使用文本转语音服务将输入文本转换为合成语音。与纯文本相比,SSML可让开发人
近来在了解卷积神经网络(CNN),后来查到CNN是受语音信号处理中时延神经网络(TDNN)影响而发明的。本篇的大部分内容都来自关于TDNN原始文献【1】的理解和整理。该文写与1989年,在识别"B", "D", "G"三个浊音中得到98.5%的准确率,高于HMM的93.7%。是CNN的先驱。 普通神经网络识别音素在讲TDNN之前先说说一般的神经网络的是怎样识别音素的吧。假设要识别三个辅音
情感语音识别的基本环境是传统的机器学习方法,即使用特征参数有监督的训练模型,然后使用测试集进行识别。常用的、也比较简单的就是:支持向量机SVM。该识别网络性能较好,且学习资源较丰富,还有matlab的工具箱。需要下载工具包,设置路径添加到MATLAB中即可使用。 关于LibSVM工具箱的下载及
文章目录1. 语音识别的基本单位1.1 Phoneme(音位,音素)1.2 Grapheme(字位)1.3 Word(词)1.4 Morpheme(词素)1.5 bytes2. 获取语音特征(Acoustic Feature)2. 语音识别的网络结构3. 语音识别模型3.1 LAS(Listen, Attend, and Spell)1. down sampling(下采样)2. Beam se
目前网上关于tensorflow 的中文语音识别实现较少,而且结构功能较为简单。而百度在PaddlePaddle上的 Deepspeech2 实现功能却很强大,因此就做了一次大自然的搬运工把框架转为tensorflow….简介百度开源的基于PaddlePaddle的Deepspeech2实现功能强大,简单易用,但新框架上手有难度而且使用过程中遇到了很多bug,因此萌生了转成tensorflow的想
编者:今年的INTERSPEECH于8月20日至24日在瑞典的斯德哥尔摩顺利召开,众多的高校研究机构和著名的公司纷纷在本次会议上介绍了各自最新的技术、系统和相关产品,而阿里巴巴集团作为钻石赞助商也派出了强大的阵容前往现场。从10月25日开始,阿里iDST语音团队和云栖社区将共同打造一系列语音技术分享会,旨在为大家分享INTERSPEECH2017会议上语音技术各个方面的进展。本期分享的主题是远场语
语音识别的研究工作大约开始于50年代,当时AT& T Bell实验室实现了第一个可识别十个英文数字的语音识别系统――Audry系统。70年代,语音识别领域取得了突破。在理论上,LP技术得到进一步发展,动态时间归正技术(DTW)基本成熟,特别是提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。在实践上,实现了基于线性预测倒谱和DTW技术的特定人孤立
前几期我们一起学习了,R-CNN, SPP-Net, Fast RCNN等网络,链接如下:目标检测算法Fast RCNN详解目标检测算法SPP-Net详解目标检测算法R-CNN详解 由于每期都是逐步改进,重复的不在赘述,所以建议先阅读前面的,这期我们继续改进,学习一下Faster RCNN都做了哪些改进?我们知道Fast RCNN的主要贡献是将分类和回归整合到了网络中,虽然速度提升了不少,但是还是
https://blog.csdn.net/weixin_44015907/article/details/100148218?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-
原创
2021-04-22 22:27:42
946阅读
之前的由线性层组成的全连接网络是深度学习常用的分类器,由于全连接的特性,网络提取的特征未免冗余或者抓不住重点,比如像素的相对空间位置会被忽略。所以,在全连接层前面加入特征提取器是十分有必要的,卷积神经网络就是最好的特征提取器。CNN 关于卷积神经网络的输入输出特征图,以及多通道多批量的特征处理,参考:卷积神经网络的输入输出特征图大小计算。单输出通道的卷积核:输入图像的每个通道分别对应一片卷积核矩阵
零基础入门语音识别-食物声音识别CNN(卷积神经网络)模型的搭建与训练。Task4 CNN模型搭建训练个人理解打卡本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第八场 —— 零零基础入门语音识别-食物声音识别挑战赛。 baseline由开源学习组织Datawhale提供在task4里我细化学习了CNN网络的搭建和代码实现,对CNN在baseline中的初步了解在Task1中就有所
华为手机语音转文字怎么设置,如何完成音频在线转换使用华为手机的朋友一定有感觉到手机上有太多的功能能够帮助我们快速的完成工作,那么华为手机上有一个能够将语音转换成文字的功能你知道如何使用吗?如果还不知道的话下面我们就来一起学习下如何使用手机上的语音识别功能快速的将语音识别成文字!那么我们在想要将语音识别转换成文字的时候,就可以在手机的备忘录里面点击右下角的"+"按钮 在点击后就会进入到"编辑笔记"的
参考博文:总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮。长短时记忆网络(LSTM,LongSh
语音识别主要趋于远场化和融合化的方向发展,但在远场可靠性还有很多难点没有突破,比如多轮交互、多人噪杂等场景还有待突破,还有需求较为迫切的人声分离等技术。新的技术应该彻底解决这些问题,让机器听觉远超人类的感知能力。这不能仅仅只是算法的进步,需要整个产业链的共同技术升级,包括更为先进的传感器和算力更强的芯片。单从远场语音识别技术来看,仍然存在很多挑战,包括:(1)回声消除技术。由于喇叭非线性失真的存在
语音识别原理首先是语音识别和语音唤醒等任务。一听到你就会想起科大讯飞,中国百度等平台,由于 这两家企业在中国语音领域占用80+市场,所以他们做得很优秀,不过由于高精技术无法开源,其他企业只得花费大量的金钱去购买其API,而无法研究语音识别等应用,导致民间语音识别发展较慢,今天我们来一饱眼福吧!信号处理,声学特征提取我们都知道声音信号是连续的模拟信号,要让计算机处理首先要转换成离散的数字信号,进行采
一、简介常用文本识别算法有两种:CNN+RNN+CTC(CRNN+CTC)CNN+Seq2Seq+Attention其中CTC与Attention相当于是一种对齐方式,具体算法原理比较复杂,就不做详细的探讨。其中CTC可参考这篇博文,关于Attention机制的介绍,可以参考我的另一篇博文。CRNN 全称为 Convolutional Recurrent Neural Network,在2015年
【语音识别】⚠️玩转语音识别 1⚠️ 语音识别简介
原创
2021-11-17 09:50:46
569阅读