很多时候,我们在数据处理的时候需要进行模糊匹配,输入的内容和目标匹配内容并不能完全匹配,如果能有一部分匹配,那么根据需求我们也可以选择性的使用这些数据,而对于这些数据的具体匹配,肯定会不同的数据有不同的结果。这样的数据分析处理场景,大多时候都是在进行字符串匹配时会遇到的情景,为了能够有一个具有说服力、标准化、通用性的匹配标准,我们通常会使用一些专业的算法去处理,今天给大家介绍一种办法,那就是 莱
2013年数学建模拼接问题论文g(x,y)当g x,y 0时,图片为左边碎图片。2122边缘特征点的检测与配准,详细研究了基于边缘轮廓提取特征点和利用提取的特征点进行配准。特征点提取是基于边缘特征点图像配准方法的关键,相似性度量。相似性度量是指用哪种方法来确定待配准特征之间的相似性。它是以某种距离函数或代价函数的形式出现的。相似性度量与特征空间是紧密相连的,因为相似性度量是利用特征提取的信息,特征
  在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很多,最近查阅了相关的资料,这里整理罗列下。  为了方便下面的解释和举例,先设定我们要比较X个体和Y个体间的差异,它们都包含了N个维的特征,即X=(x1, x2, x3,
转载 2024-07-30 20:02:27
747阅读
 【前沿重器】栏目主要给大家分享各种大厂、顶会的论文和分享,从中抽取关键精华的部分和大家分享,和大家一起把握前沿技术。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。之前在小布助手的文章(原文来自OPPO互联网技术:基于深度学习的短文本相似学习与行业测评,我的记录在:前沿重器[7] | 小布助手登顶百千言短文本相似的秘诀)里,其实能注意到一个细节,就是在损失函数的设计上借鉴了人
本期文章,我们对embedding词嵌入、similarity相似性和clustering聚类进行相关的介绍,而这些都是大多数 ML机器学习的基础,也是自动编码器必不可少的算法。 在计算机中将真实的相关数据表示为计算机可以识别的数据过程称为embedding词嵌入,这在我们介绍transformer模型时有相关的介绍,因为计算机不能直接识别图片,或者文字,我们需要把这些图片或者文字进行一
 本文目录:1. 欧氏距离2. 曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5. 标准化欧氏距离6. 马氏距离7. 巴氏距离(Bhattacharyya Distance)8. 汉明距离(Hamming distance)9. 夹角余弦10. 汉明距离11. 杰卡德距离 & 杰卡德相似系数12. 相关系数 & 相关距离13. 信息熵 1. 欧氏距离
一、概述基于相似的技术在数据点稀疏或与其他数据点相似低时将其定义为异常值。数据点的相似性可以用多种方式来定义,这些方式彼此之间有微妙的不同,但却足够相似,值得进行总结说明。离群值分析中定义相似的最常用方法如下:基于聚类的方法: 任何群集中的数据点的非隶属性、它与其他群集的距离、最近群集的大小或这些因素的组合被用来量化离群值得分。聚类问题与异常检测问题有着互补关系,在这个问题中,点要么属于聚类
本文实现了根据余弦距离的文本相似的C++实现算法,如要要点如下:1、对1998年1月的人民日报所有文章进行预处理(其中文件已经分化好分词),然后进行去噪声、去停用词等操作。2、对处理好的数据进行余弦计算,并存储为相应的数据结构。3、输出前N篇最相似的文章下面介绍Statistics.cpp,对预处理文件进行统计词频。 1 #pragma once 2 #include "TextSimila
转载 2024-07-29 09:03:50
415阅读
gensimgensim是在做自然语言处理时较为经常用到的一个python工具库,主要用来以无监督的方式从原始的非结构化文本当中,学习文本隐藏的主题向量表达。包括TF-IDF、word2vec、doc2vec等多种模型实现逻辑利用HanLP对标题进行分词,形成一个二维的列表将二维列表生成预料词典,通过doc2bow稀疏向量,形成语料库词袋模型 + TF-IDF模型,计算出tfidf值获取预料词典的
推荐算法准确度度量公式:其中,R(u)表示对用户推荐的N个物品,T(u)表示用户u在测试集上喜欢的物品集合。集合相似度度量公式(N维向量的距离度量公式):Jaccard公式:其中,N(u)表示用户u有过正反馈的物品集合。余弦相似公式:UserCF公式:其中,S(u,k)表示和用户u兴趣最接近的K个用户集合;N(i)表示对物品i有过正反馈的用户集合;w(u,v)表示用户u和用户v的兴趣相似;r(
因为最近在做短文本匹配的项目,所以,简单的记个笔记。短文本匹配,即计算两个短文本的相似。从广义分,可以分为无监督方式,有监督方式,有监督和无监督结合方式。具体实现,可以使用两个算法库,分别是MatchZoo和text_matching,在github上以上两个算法都开源了。1.无监督方式。通过模型训练语料得到词向量,如word2vec,glove等模型。然后通过对文本进行分词,通过look up
前言本文介绍了3篇二进制代码相似性分析的顶会技术,他们体现了二进制代码相似性分析中一些最先进的思想。第一篇是Genius技术,是在《基于神经网络图嵌入的跨平台二进制代码相似性检测》论文中作为对比技术介绍,它首次使用图嵌入这个机器学习的概念去做二进制代码相似性分析,它涉及到了聚类算法、图比对、密码本等技术,也为后两篇论文打下了基础。第二篇是Gemini技术,它使用了更先进的Structur
0.引言在建模的过程中,当需要整理出两两样本之间的联系时,通常会使用“相似性(similarity)”来描述这种联系。在一般语境中,我们通常会用“距离(distance)”来代表这种联系。一般来说,相似性和距离代表的含义是相同的。而对距离的正确建模能帮助模型更快的挖掘出隐含在数据分布之间的联系。1.两样本的相似的衡量1.1 基本性质非负性:同一性:对称性:直递性:1.2 常用度量方式:以n维样本
我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较。只有通过比较才能得出结论,究竟是相同还是不同。但是万物真的有这么极端的区分吗?在我看来不是的,生活中通过“相似”这词来描述可能会更加准确。比如男人和女人,虽然生理器官和可能思想有些不同,但也有相同的地方,那就是都是人,就是说相似不为0;比如石头与小草,它们对于虚拟类都是一种实体类,相似
转载 2024-08-03 15:51:43
203阅读
  最近在工作中要处理好多文本文档,要求找出和每个文档的相识的文档。通过查找资料总结如下几个计算方法:  1、余弦相似性    我举一个例子来说明,什么是"余弦相似性"。    为了简单起见,我们先从句子着手。        请问怎样才能计算上面两句话的相似程度?    基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。    第一步,分词。 
一、bm25的应用和基础医学领域,BM25算法的应用,文档分类,相似识别以及疾病、手术等实体的相似匹配。文档的处理相对简单,可以直接调用相关算法包,实体单词的相似匹配需要对文本做相关的处理。对比研究,在文档中,表示特征的主要是单词,而在实体名词(疾病、手术、药品名称)中,表示特征的是字或者由n-gram切分的元素,当用字表示特征时,文本的语义会丢失,所以我建议用字和n-gram(n>=
在我们日常开发过程中有时遇到需要对标题内容进行关键字检索匹配排序,一般我们常用"like"直接做了模糊查询,但是这种模糊查询没有做到关键词匹配查询。下面我整理两种我在开发中用到两种取巧的做法:做法一:利用数据库like关键词进行第一步匹配出包含关键词的数据,然后利用关键词在所在语句长度和关键词长度做对比,得到比重越大的说明关键字在语句中越重要,这里没有考虑一句话里面包含关键词多次的情况,sele
大数据系统与大规模数据分析学习笔记(相似计算) 寻找相似项过程:1. Jaccard相似 定义 Jaccard 相似计算公式:J(A,B)=(A交B)/(A并B)2. shingling将文档用短字符集合来表示2.1 k-shinglecharacter 级别:包括空格word 级别:不包括空格和逗号句号符2.2 k 值大小的选择如果文档由邮件组成,那么选择 k = 5 比较合适。如果文档比
0 引言问题背景:大量的工程实践表明,点云匹配关系的求解是一个非常复杂而困难的问题。其核心点在于找到一种映射方法,该方法将某个点映射到一个有限m维的特征向量, A = {a1,a2,a3,…,am}. 基于某种距离度量的方法,比如欧式距离法,计算A与任意某B的距离值距离值为distance = |A-B|.若A与B的距离值与两点在几何及 拓扑上的相似性呈正相关,该相关系数越接近1(或者-1,效果相
转载 2024-04-29 18:06:18
168阅读
今天的产品涉及到一个相似匹配算法,上网查了这类算法很多。跟研发讨论,研发推荐使用余弦值相似算法。余弦值相似算法是个什么算法?余弦距离,也称为余弦相似,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。 余弦值越接近1,也就是两个向量越相似,这就叫"余弦相似性",余弦值越接近0,也就是两个向量越不相似,也就是这两个字符串越不相似。 是不是更加云里雾里了
转载 2023-09-23 17:07:30
176阅读
  • 1
  • 2
  • 3
  • 4
  • 5