链式比较操作 它会把这种链式的比较操作转换成:1 < x and x < 10 >>> x = 5 >>> 1 < x < 10 True >>> 10 < x < 20 False >>> x < 10 < x*10 < 100 True >>> 10
聊聊feature_importances_  1 背景2 原理2.1 文字版2.2 公式版2.3 面试遇到的问题   3 Python实现3.1 解决mac下用jupyter绘图不显示中文的问题3.2 一个神奇的函数:np.argsort   4 参考  1 背景  在运用树模型建模的时候,常用的一个sklearn的子库就是看特征重要性,也就是f
方法特征重要性是指特征对目标变量的影响程度,即特征在模型中的重要性程度。判断特征重要性的方法有很多,下面列举几种常用的方法:1. 基于树模型的特征重要性:例如随机森林(Random Forest)、梯度提升树(Gradient Boosting Tree)等模型可以通过计算每个特征在树模型中被使用的次数或者被用来进行分裂的重要性,来衡量特征重要性。2. 基于线性模型的特征重要性:例如线性回归(L
简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法。  优点:精度高、对异常值不敏感、无数据输入假定。  缺点:计算复杂度高、空间复杂度高。  适用数据范围:数值型和标称型。  工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将数据的每个特征与样本集中数据对应的特征
Tree ensemble算法的特征重要计算标签: 特征选择 GBDT 特征重要度集成学习因具有预测精度高的优势而受到广泛关注,尤其是使用决策树作为基学习器的集成学习算法。树的集成算法的著名代码有随机森林和GBDT。随机森林具有很好的抵抗过拟合的特性,并且参数(决策树的个数)对预测性能的影响较小,调参比较容易,一般设置一个比较大的数。GBDT具有很优美的理论基础,一般而言性能更有优势。关于GBD
在采用决策树算法建立模型的场景中,例如GBDT、XGBoost、LightGBM、Random Forest等,我们习惯通过Feature Importance指标作为特征筛选的重要方法之一。从特征定量分析的可解释角度来讲,这种方法实现过程方便,且评估逻辑简单,因此在决策树的实际建模场景中应用较为广泛。 针对Feature Importance的应用,虽然实践效果较好,但仍存在一定的缺点,主要体
一、概念RF、GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒。二、关系根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系、必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系、可同时生成的并行化方法;前者的代表就是Boosting,后者的代表
转载 2024-09-10 09:51:42
130阅读
数据结构和算法基础什么是数据结构和算法:兵法,计算的方法。算法是独立存在的一种解决问题的方法和思想。算法的特征:输入:算法具有0个或多个输入输出:算法至少有1个或多个输出有穷:算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成确定性:算法中的每一步都有确定的含义,不会出现二义可行:算法的每一步都是可行的,也就是说每一步都能执行有限的次数完成时间复杂度和大O表
用xgboost模型对特征重要性进行排序在这篇文章中,你将会学习到:xgboost对预测模型特征重要性排序的原理(即为什么xgboost可以对预测模型特征重要性进行排序)。如何绘制xgboost模型得到的特征重要性条形图。如何根据xgboost模型得到的特征重要性,在scikit-learn进行特征选择。 梯度提升算法是如何计算特征重要性的?使用梯度提升算法的好处是在提升树被创建后,可以
一. 为什么要使用PythonPython的主要特点有:(1)软件质量,Python代码具有很强的可读,因此在重用和维护方面就比较方便;(2)编码效率,Python没有编译和链接库的过程;(3)程序移植,不做任何修改,Python可运行在Windows和Linux系统;(4)丰富的支撑库,Python既可集成自身的库,也可使用第三方库;(5)组件集成功能,它可与多种语言通信,不是一个
特征重要性排序在机器学习模型开发表现非常关键。这篇博文将带你深入了解如何Python 中实现特征重要性排序的过程中,涵盖版本对比、迁移指南、兼容处理、实战案例、排错指南和性能优化等结构。 ## 版本对比 在Python机器学习库发展迅速的时代,我们需要对不同版本的库进行对比,尤其是涉及特征重要性排序的方法是否有所变化。 ### 兼容分析 在不同版本中,特征重要性排序的实现可能会涉及
原创 5月前
18阅读
任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置。特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程。Prateek Joshi,是一名数据科学家,花了不少时间研究多种特征,并从不同角度分析其可行。现在,整个特征工程过程可实现自动化,他将通过这篇文章进行详细介绍。下面会使用Python特征工程库Featuretools来实现这个任
随机森林模型介绍:随机森林模型不仅在预测问题上有着广泛的应用,在特征选择中也有常用。随机森林是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,更令人惊奇的是它在分类和回归上表现出了十分惊人的性能。 随机森林模型在拟合数据后,会对数据属性列,有一个变量重要性的度量,在sklearn中即为随机森林模型的 feature_importances_ 参数,这个参数返回一个nu
 目录1 特征工程是什么?2 数据预处理2.1 无量纲化2.1.1 标准化2.1.2 区间缩放法2.1.3 标准化与归一化的区别2.2 对定量特征二值化2.3 对定性特征哑编码2.4 缺失值计算2.5 数据变换3 特征选择3.1 Filter3.1.1 方差选择法3.1.2 相关系数法3.1.3 卡方检验3.1.4 互信息法3.2 Wrapper3.2.1 递归特征消除法3.3 Embe
# 置换特征重要性Python中的应用与实现 在机器学习和数据挖掘中,理解特征重要性是提升模型性能和解释能力的关键之一。置换特征重要性(Permutation Feature Importance)是一种有效的方法,通过这种方法,我们可以了解各个特征对模型预测的贡献程度。本文将为您介绍置换特征重要性的概念、实现方式,并通过Python代码示例展示其应用。同时,我们还将通过饼状图和甘特图进行可
原创 9月前
316阅读
# 如何实现“randomforest python 特征重要性” ## 引言 作为一名经验丰富的开发者,帮助刚入行的小白学习如何实现“randomforest python 特征重要性”是一项很有意义的任务。在本文中,我将为你详细介绍整个实现流程,并提供每一步所需的代码示例及解释。 ## 实现流程 首先,让我们来看一下实现“randomforest python 特征重要性”的整个流程:
原创 2024-03-26 08:17:50
62阅读
## Python特征重要性排序 ### 引言 在机器学习领域中,特征工程是非常重要的一环。特征工程的目标是选择和提取最相关的特征,以便构建更准确的模型。特征选择的一个重要方法是通过特征重要性排序来评估各个特征的相对重要性。在本文中,我们将介绍如何使用Python中的一些常用工具来进行特征重要性排序,并提供相应的代码示例。 ### 特征重要性排序方法 特征重要性排序是指对特征进行排序,以确
原创 2023-08-21 10:16:35
983阅读
  在使用tensorflow搭建模型时会有特征工程的工作,今天介绍一下tensorflow做特征工程的api:tf.feature_column。  1、tf.feature_column.input_layertf.feature_column.input_layer( features, feature_columns, weight_collec
实验:使用的数据集为天池新人赛中的,优惠券使用预测。利用FM/FFM做自动化特征工程,利用GBDT进行预测。结论:先说结论,用FM/FFM 来自动化特征工程的效果并不好,不如人工构建特征+GBDT原因:在GBDT模型下加入FM/FFM一阶特征,并没有起到提高AUC的作用,反而略微下降。因为新加入的特征本身就存在原来的特征中,为共线性的特征,产生了干扰。所以没有必要加入一阶特征,但是我们可以通过所获
说起决策树,不禁想到了第一次用决策树解决问题时的场景。当时是解决机械领域一个轴承故障分类问题,效果很好,也是从那开始开始决策树走进了我的心里。当时对原理理解的不清楚,但后来学了原理之后才发现我还可以把模型改进的更好。 众所周知,决策树是一种简单高效并且具有强解释的模型,被广泛应用于数据分析领域。在建树之前我们需要考虑一些问题,比如这棵树是怎么生成的?数中节点的位置怎么确定?根据什么进行分类等等。
  • 1
  • 2
  • 3
  • 4
  • 5