3.1.b贝叶斯博弈的两个例子 再谈混合策略,这里拿性别战举例子给出如下博弈:有一对夫妻,丈夫喜欢看足球赛节目,妻子喜欢看肥皂剧节目,但是家里只有一台电视,于是就产生了争夺频道的矛盾。假设双方都同意看足球赛,则丈夫可得到2单位效用,妻子得到一单位效用;如果都同意看肥皂剧,则丈夫可得到1单位效用,妻子得到2单位效用;如果双方意见
转载
2023-10-11 11:57:15
190阅读
概率图模型分类有向图:静态贝叶斯、动态贝叶斯(隐马尔可夫模型)无向图:马尔可夫网络(条件随机场、玻尔兹曼机)隐马尔可夫模型评估问题$HMM<S,O,\Theta>, \Theta=<\pi ,A, B>$隐藏状态S,观测状态O,初始状态的概率分布$\pi$,隐藏状态转移概率A,观测状态转移概率B计算观测序列概率$p(O|\Theta)=\sum_{S}^{ }p(O,S|\
贝叶斯网络的推理(inference)
(1)推理问题 在了解如何构造贝叶斯网络之后,下面我们考虑如何利用贝叶斯网络来进行推理。贝叶斯网络的推理是对某些变量当给定其它变量的状态作为证据时如何推断它们的状态,也就是通过计算回答查询(query)的过程。这个推理的过程也称为概率推理或信念更新。 在实践中,贝叶斯网的推理基于贝叶斯统计,重点在于后验概率或密度的计算。推理问题可分为这样的三类: (a)后
转载
2024-06-11 00:10:04
237阅读
# 动态贝叶斯网络:Python实现
动态贝叶斯网络(Dynamic Bayesian Network,DBN)是一种强大的概率模型,它能够随着时间变化来建模不确定性。这种网络尤其适用于序列数据分析,例如时间序列预测、语音识别、基因排序等。
## 动态贝叶斯网络的基本概念
动态贝叶斯网络的核心在于其图结构,它通过有向无环图(DAG)表示随机变量及其条件独立性关系。在DBN中,每一个时刻的状态
瞿锡垚
1 ,刘学军 1 ,张礼 2
(1.南京航空航天大学,计算机科学与技术学院,江苏 南京 211106;
2.南京林业大学,信息科学技术学院,江苏 南京 210037)摘 要 :贝叶斯网络作为一种不确定知识表示网络,由网络结构和各节点的条件概率表组成,在解决系统决策问 题方面具有先天的理论优势。目前在大多数贝叶斯网络的应用中,各节点条件概率表的产生均是以人工输入的方 式完成,这在一些拥有较多
转载
2024-06-13 15:36:01
452阅读
1. 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。它用网络结构代表领域的基本因果知识。 贝叶斯网络中的节点表示命题(或随机变量),认为有依赖关系(或非条件独立)的命题用箭头来连接。 令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi),
转载
2023-11-16 19:42:29
504阅读
多智能体强化学习与博弈论-博弈论基础4本篇文章主要讲的是贝叶斯博弈(Bayesian Games,也称作不完全信息博弈)和拍卖理论。不完全信息博弈在我们生活中经常出现,比如拍卖,在市场和别人讨价还价等等。贝叶斯博弈首先举一个贝叶斯博弈的简单例子假设两个人在决定接下来要做什么,B代表Ballet,F代表Football。player1不知道player2希望和他选择做一样的事情,还是希望避免和他做一
转载
2024-06-09 10:19:44
264阅读
概率图表示之贝叶斯网络 文章目录贝叶斯网络概率模型图表示正式定义贝叶斯网络的依赖用有向图描述独立性有向图的表示能力 我们先从 表示 这一主题开始:我们如何选择概率分布来模拟真实世界中我们感兴趣的方面?提出一个好的模型并不容易:我们在导言中看到,一个简单的垃圾邮件分类模型需要我们指定一系列参数,这些参数随着英语单词数呈指数级增长!本章中,我们将学习一种避免此类复杂情况的方法。我们将:学习一种仅使
转载
2024-06-03 15:09:18
85阅读
贝叶斯法则的举例分析 可以将贝叶斯法则的分析思路表达如下。 挑战者B不知道原垄断者A是属于高阻挠成本类型还是低阻挠成本类型,但B知道,如果A属于高阻挠成本类型,B进入市场时A进行阻挠的概率是20%(此时A为了保持垄断带来的高利润,不计成本地拼命
转载
2024-04-17 09:47:10
74阅读
Python机器学习算法实现 Author:louwill 在上一讲中,我们讲到了经典的朴素贝叶斯算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常过于严格,在实际中很难成立。特征之间的相关性限制了朴素贝叶斯的性能,所以本节笔者将继续介绍一种放宽了
转载
2023-10-26 10:52:45
4210阅读
©作者 | 机器之心编辑部在领域泛化 (Domain Generalization, DG) 任务中,当领域的分布随环境连续变化时,如何准确地捕捉该变化以及其对模型的影响是非常重要但也极富挑战的问题。为此,来自 Emory 大学的赵亮教授团队,提出了一种基于贝叶斯理论的时间域泛化框架 DRAIN,利用递归网络学习时间维度领域分布的漂移,同时通过动态神经网络以及图生成技术的结合最大化模型的
转载
2024-07-08 09:59:32
505阅读
# 动态贝叶斯网络:理解与应用
## 引言
动态贝叶斯网络(Dynamic Bayesian Networks,DBN)是一种强大的概率模型,用于描述时间序列数据中的不确定性。与传统的贝叶斯网络相比,动态贝叶斯网络能够捕捉到时间随时间变化的动态特征,这使得它在许多领域(如金融预测、医疗监测与自然语言处理)中得到了广泛应用。
本文将结合代码示例和序列图来介绍动态贝叶斯网络的基本原理,并演示如何
记号说明\(1.输入集\textbf{X}=\{x_1,...,x_N\}是N个观测值,某一个观测\{x_n\},其中n=1,2,...,N,通俗讲就是\)x_train\(,或者文中称为\mathcal{D}\)\(2.观测对应的目标值\textbf{t}=\{t_1,...,t_n\},通俗讲就是\)y_train\(3.模型函数 t=y(x),输入变量x,输出对应的t的预测\)\(4.预测分
转载
2024-01-16 14:26:30
114阅读
朴素贝叶斯算法(1)超详细的算法介绍朴素贝叶斯算法(2)案例实现github代码地址引言关于朴素贝叶斯算法的推导过程在朴素贝叶斯算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下贝叶斯算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。案例一:多项式模型特征属性是症状和职业,类别是疾病(包括感冒,过敏、脑震荡) 某个医院早上收了六个门诊病人,如下表:症状职业疾病打喷嚏
转载
2024-01-20 06:12:05
127阅读
朴素贝叶斯(Naive Bayes)= Naive + Bayes 。(特征条件独立 + Bayes定理)的实现。零、贝叶斯定理(Bayes' theorem)所谓的贝叶斯方法源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球
转载
2024-06-14 10:15:38
81阅读
点赞
# 如何在Python中实现动态贝叶斯网络模型
动态贝叶斯网络(DBN)是一种用于表示和推理动态系统的概率模型。它以贝叶斯网络为基础,能够处理时间序列数据。本文将指导你如何在Python中实现DBN模型,适合初学者。
## 实现流程
以下是实现动态贝叶斯网络的基本流程:
| 步骤 | 描述 |
|------|--------------
机器学习笔记之线性分类——朴素贝叶斯分类器引言回顾:概率生成模型朴素贝叶斯分类器朴素贝叶斯假设基于朴素贝叶斯假设的分类过程场景描述分类过程实例解析 引言本节将介绍一个经典的基于线性分类的概率生成模型——朴素贝叶斯分类器(Naive Bayes Classifier)。回顾:概率生成模型在机器学习笔记之线性分类——高斯判别分析(一)模型思路构建中介绍过,概率生成模型用于分类任务的朴素思想是软分类思想
一、概述 贝叶斯算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为贝叶斯分类。而朴素贝叶斯(Naive Bayesian)是其中应用最为广泛的分类算法之一。 朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想 用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
转载
2023-12-17 11:26:17
127阅读
贝叶斯定理是用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。贝叶斯的统计学中有一个基本的工具叫贝叶斯公式、也称为贝叶斯法则, 尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则
转载
2023-10-13 12:31:45
51阅读
一、贝叶斯决策 贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,贝叶斯考虑如何基于这些概率和误判损失来选择最优的类别标记。 朴素贝叶斯分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。1、条件概率 概率指的是某一事件A发生的可能性,表示为P(A)。 条件概率指的是某一事件A已经发生了条
转载
2023-09-25 15:19:08
111阅读