1、首先介绍tf.nn.conv2d()函数, 其函数原型:conv2( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None )(1) input(输入):类型为tf.float32或tf.float64。通常指需要做卷积的输入
转载 2024-04-11 14:19:07
186阅读
from tensorflow.keras.callbacks import EarlyStopping import tensorflow as tf import time import numpy as np import matplotlib.pyplot as plt import sys from tensorflow import keras import os from tenso
转载 2024-06-25 18:41:27
34阅读
Transformer在CV领域有可能替代CNN吗?OpenCV学堂昨天来源:极市平台&知乎编辑:SF目前已经有基于Transformer在三大图像问题上的应用:分类(ViT),检测(DETR)和分割(SETR),并且都取得了不错的效果。那么未来,Transformer有可能替换CNN吗,Transformer会不会如同在NLP领域的应用一样革新CV领域?后面的研究思路可能会有哪些?&nb
转载 2024-05-21 18:26:05
112阅读
 我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和
转载 2024-03-15 08:33:07
98阅读
作者丨王云鹤导读到底CNNTransformer哪个更好?当然是强强联手最好。华为诺亚实验室的研究员提出一种新型视觉网络架构CMT,通过简单的结合传统卷积和Transformer,获得的网络性能优于谷歌提出的EfficientNet,ViT和MSRA的Swin Transformer。摘要近年来,Transformer在视觉领域吸引了越来越多的关注,随之也自然的产生了一个疑问:到底CNN和Tra
Transformer模型由《Attention is all your need》论文中提出,在seq2seq中应用,该模型在Machine Translation任务中表现很好。动机常见的seq2seq问题,比如摘要提取,机器翻译等大部分采用的都是encoder-decoder模型。而实现encoder-decoder模型主要有RNN和CNN两种实现;CNNcnn 通过进行卷积,来实现对输入
转载 2024-04-30 04:12:41
75阅读
RNN、CNNTransformer是目前在NLP中最常用的三个特征抽取器,本篇博客将对它们三个做一下全面对比。RNN1、为何RNN能够成为解决NLP问题的主流特征抽取器    主要原因还是因为RNN的结构天然适配解决NLP的问题:    (1)NLP的输入往往是个不定长的线性序列句子,而RNN本身结构就是个可以接纳不定长输入的由前向后
转载 2024-08-12 12:14:16
308阅读
1.RNN和CNN的局限性RNN是seq2seq的模型,RNN不易平行化,如果是单向的话,要输出\(b^3\),需要先看完\(a^1, a^2, a^3\)。如果是双向的话,可以看完整个句子。CNN在高层的时候,可以考虑距离更长的信息,CNN易于并行化。CNN的缺点是,考虑的只是局部内容,要考虑长距信息,需要叠加很多层。2.Self-attentionattention和bi-RNN有同样的能力,
转载 2024-04-08 20:58:08
301阅读
代码地址:https://github.com/leoxiaobin/CvThttps://github.com/microsoft/CvT/blob/main/lib/models/cls_cvt.py Transformer大火,最近的论文几乎都是transformer系列了,但是CNN也有其可取之处,未来CNNtransformer结合想必是大势所趋。这篇文章将CNN引入Transform
单位:MBZUAI(位于阿布扎比的默罕默德人工智能大学),IIAI(起源研究院,邵岭团队) ArXiv: https://arxiv.org/abs/2206.10589 Github: https://github.com/mmaaz60/EdgeNeXt导读:CNNTransformer单独玩出的花样层出不穷。你中有我我中有你的思想,交替出现,例如Large Kernel CNN试图去模仿
转载 2024-04-13 10:52:53
164阅读
bert就是无监督训练的transformertransformer :seq2seq model with “self-attention”单向的RNN: 在输出b4的时候,已经看了a1~a4 在输出b3的时候,已经看了a1~a3 双向的RNN: 在输出每一个bi的时候,已经看了a1~a4 RNN的优点: 可以考虑到长距离的依赖 RNN的缺点: 不能实现并行化也可以用CNN来处理序列数据,图中每
、作者丨杜伟、陈萍导读无残差连接或归一化层,也能成功训练深度transformer。尽管取得了很多显著的成就,但训练深度神经网络(DNN)的实践进展在很大程度上独立于理论依据。大多数成功的现代 DNN 依赖残差连接和归一化层的特定排列,但如何在新架构中使用这些组件的一般原则仍然未知,并且它们在现有架构中的作用也依然未能完全搞清楚。残差架构是最流行和成功的,最初是在卷积神经网络(CNN)的背景下开发
转载 2024-04-19 15:48:23
29阅读
1 为何引入Transformer论文:Attention Is All You NeedTransformer是谷歌在2017年发布的一个用来替代RNN和CNN的新的网络结构,Transformer本质上就是一个Attention结构,它能够直接获取全局的信息,而不像RNN需要逐步递归才能获得全局信息,也不像CNN只能获取局部信息,并且其能够进行并行运算,要比RNN快上很多倍。为什么引入Atte
介绍几篇利用CNN+Transformer实现图像分类的论文:CMT(CVPR2022),MaxViT(ECCV2022),MaxViT(ECCV2022),MPViT(CVPR2022)。主要是说明Transformer的局限性,然后利用CNN的优势去弥补和结合。CMT: Convolutional Neural Networks Meet Vision Transformers, CVPR20
参考: https://www.bilibili.com/video/BV1UL411g7aX/?spm_id_from=333.880.my_history.page.click&vd_source=de203b26ba8599fca1d56a5ac83a051c一、什么是Transformer     Transformer和RNN,CNN不一样,整个网络结构完全由Attention机
1简介本文工作解决了Multi-Head Self-Attention(MHSA)中由于计算/空间复杂度高而导致的vision transformer效率低的缺陷。为此,作者提出了分层的MHSA(H-MHSA),其表示以分层的方式计算。具体来说,H-MHSA首先通过把图像patch作为tokens来学习小网格内的特征关系。然后将小网格合并到大网格中,通过将上一步中的每个小网格作为token来学
论文标题:Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing论文作者:Zihang Dai (CMU, Google), Guokun Lai (CMU), Yiming Yang (CMU), Quoc V. Le (Google)论文链接:https:/
通用串行总线(英语:Universal Serial Bus,缩写:USB)是连接计算机系统与外部设备的一种串口总线标准,也是一种输入输出接口的技术规范,被广泛地应用于个人电脑和移动设备等信息通讯产品,并扩展至摄影器材、数字电视(机顶盒)、游戏机等其它相关领域。多媒体电脑刚问世时,外接式设备的传输接口各不相同,如打印机只能接LPT port、调制解调器只能接RS232、鼠标键盘只能接PS/2等。繁
标题&作者团队 CMT: Convolutional Neural Networks MeetVision Transformers 论文:https://arxiv.org/abs/2107.06263 本文是华为诺亚与悉尼大学在Transformer+CNN架构混合方面的尝试,提出了一种同时具有Transformer长距离建模与CNN局部特征提取能力的C
计算机视觉研究院专栏作者:Edison_G现阶段的人脸检测识别技术已经特别成熟,不管在什么领域都有特别成熟的应用,比如:无人超市、车站检测、犯人抓捕以及行迹追踪等应用。但是,大多数应用都是基于大量数据的基础,成本还是非常昂贵。所以人脸识别的精度还是需要进一步提升,那就要继续优化更好的人脸识别框架。长按扫描二维码我们论文:https://arxiv.org/pdf/2103.14803.pdf一
  • 1
  • 2
  • 3
  • 4
  • 5