代码地址:https://github.com/leoxiaobin/CvThttps://github.com/microsoft/CvT/blob/main/lib/models/cls_cvt.py Transformer大火,最近的论文几乎都是transformer系列了,但是CNN也有其可取之处,未来CNN和transformer结合想必是大势所趋。这篇文章将CNN引入Transform
转载
2024-03-19 13:43:03
120阅读
视觉识别的快速发展始于 Vision transformer (ViT) 的引入,很快取代了CNN,成为了最火爆的图像分类模型。随着分层Transformer(Swin Transformer)的提出,并在各种视觉任务上表现出卓越的性能,让Transformer模型异常热门。但何凯明实验室研究者重新设计的CNN,即纯卷积网络的ConvNet,证明了CNN并没有变得无关紧要,相反,仍然具有无限价值并
转载
2024-04-02 16:04:12
179阅读
AI/CV重磅干货,第一时间送达A作者:Akihiro FUJII近年来,Vision Transformer (ViT) 势头强劲。本文将解释论文《Do Vision Transformers See Like Convolutional Neural Networks?》 (Raghu et al., 2021) 由 Google Brain 发表,并探讨传统CNN 和 Visio
转载
2024-07-30 15:36:35
100阅读
Visual TransformerAuthor:louwillMachine Learning Lab 在深度学习医学图像分割领域,UNet结构一直以来都牢牢占据着主导地位。自从2015年提出U形结构以来,后续在UNet基础上做出的魔改网络不可计数。Tranformer结构逐渐开始用于视觉领域之后,基于UNet和Tranformer结合的相关结构和研
转载
2024-04-26 14:17:02
330阅读
单位:MBZUAI(位于阿布扎比的默罕默德人工智能大学),IIAI(起源研究院,邵岭团队) ArXiv: https://arxiv.org/abs/2206.10589 Github: https://github.com/mmaaz60/EdgeNeXt导读:CNN和Transformer单独玩出的花样层出不穷。你中有我我中有你的思想,交替出现,例如Large Kernel CNN试图去模仿
转载
2024-04-13 10:52:53
164阅读
标题&作者团队
CMT: Convolutional Neural Networks MeetVision Transformers 论文:https://arxiv.org/abs/2107.06263
本文是华为诺亚与悉尼大学在Transformer+CNN架构混合方面的尝试,提出了一种同时具有Transformer长距离建模与CNN局部特征提取能力的C
本文是对《ON THE CONNECTION BETWEEN LOCAL ATTENTION AND DYNAMIC DEPTH-WISE CONVOLUTION》的分析,作者在cnn领域找到了和local attention模块相似的机制,以此构建出了可以和swin transformer分庭抗礼的CNN架构局部自注意力机制研究 作者提出局部自注意力网络如swin transforme和深度可分
简单学习BoTNet1.简单介绍 如今transformer热度较高,越来越多的人都来研究transformer,并将其用于CV领域,下图(出自BoTNet论文)就介绍了当前self-Attention在CV领域的应用,而本篇文章的主角BoTNet就是利用CNN+transformer的方式提出一种Bottleneck Transformer来代替ResNet Bottleneck。 2.大体结构
转载
2024-02-18 19:40:04
156阅读
Vision Transformer的由来图像识别常见的网络模型在 Vision Transformer 模型出来之前,我们通常使用的都是基于卷积神经网络(CNN)的模型的变种,经典的 CNN 模型如:ResNet,Google Net,AlexNet等,但是呢 CNN 有一个不可忽视的缺点,在大模型上容易出现过拟合的现象。Vision Transformer模型的优势Vision Transfo
转载
2024-06-28 20:17:15
255阅读
跟风,听说最近Transformer很热,那肯定有其过人之处,今天大概看了一下最基础版的Transformer,简单说说体会和理解吧,不一定对,希望路过的大神指点。要说是革命性的变革,那显然不是,Transformer和CNN以及RNN等都是机器学习的范畴,要说一点没变,那也不是,Transformer最大的特点,个人理解,是其Self-Attention机制,至于说这个机制是从哪儿得到的启发,暂
转载
2024-04-09 11:13:01
120阅读
bert就是无监督训练的transformertransformer :seq2seq model with “self-attention”单向的RNN: 在输出b4的时候,已经看了a1~a4 在输出b3的时候,已经看了a1~a3 双向的RNN: 在输出每一个bi的时候,已经看了a1~a4 RNN的优点: 可以考虑到长距离的依赖 RNN的缺点: 不能实现并行化也可以用CNN来处理序列数据,图中每
转载
2024-04-16 13:04:43
196阅读
介绍几篇利用CNN+Transformer实现图像分类的论文:CMT(CVPR2022),MaxViT(ECCV2022),MaxViT(ECCV2022),MPViT(CVPR2022)。主要是说明Transformer的局限性,然后利用CNN的优势去弥补和结合。CMT: Convolutional Neural Networks Meet Vision Transformers, CVPR20
转载
2024-06-18 13:54:36
186阅读
一、全局信息和局部信息 (一)局部信息 提取位置:浅层网络中提取局部信息; 特点:对应的感受野比较小,所以是在网络中的前面部分,提取局部信息,物体的几何信息比较丰富; 目的:有助于分割比较小的目标,细化,提高分割的精确程度。 (二)全局信息 提取位置:深层网络中提取全局信息; 特点:对应的感受野比较大,所以是在网络的中/后部分,提取全局信息,物体的空间信息比较丰富; 目的:有助于分割比较大的目标,
转载
2024-02-16 11:20:55
136阅读
Transformer类transformer在CV霸榜了,那么视觉中transformer比CNN的优势在哪里呢?总结一下:(1)捕获长期依赖关系:大数据适配能力强(2)统一美:和NLP统一模型。(3)依赖样本计算:attention不仅仅关注loacl信息,更多的是学到的feature彼此之间的相互关系,普适性更好,不完全依赖于数据本身,不依赖value,(4)参数动态并不是CNN就没有优势了
转载
2024-03-18 09:37:19
311阅读
本文介绍了几篇结合使用CNN和Transformer进行半监督学习的论文,CNN&Trans(MIDL2022),Semi-ViT(ECCV2022),Semiformer(ECCV2022).Semi-Supervised Medical Image Segmentation via Cross Teaching between CNN and Transformer, MIDL2022
转载
2024-06-07 11:31:25
716阅读
Transformer 有可能替代 CNN 吗?现在下结论还为时过早。Transformer 的跨界之旅,从 2020 延续到了 2021。2020 年 5 月,Facebook AI 推出了 Detection Transformer(DETR),用于目标检测和全景分割。这是第一个将 Transformer 成功整合为检测 pipeline 中心构建块的目标检测框架, 在大型目标上的检测性能要优
转载
2024-05-05 21:54:11
208阅读
Transformer在CV领域得到广泛关注,从Vision Transformer到层出不穷的变种,不断地刷新了各项任务地榜单。在CV领域的应用,Transformer在未来有可能替代CNN吗?在这个大火的阶段,确实值得我们反思一下,self-attention和CNN结构相比,到底有什么联系与区别,两者在相同配置下有什么样的差距?尤其近期一些工作在Transformer结构中引入localit
转载
2024-08-08 22:15:06
80阅读
编辑:LRS【导读】在Transformer当道的今天,CNN的光芒逐渐被掩盖,但Transformer能否完全取代CNN还是一个未知数。最近北大联合UCLA发表论文,他们发现Transformer可以在一定限制条件下模拟CNN,并且提出一个两阶段训练框架,性能提升了9%。Visual Transformer(ViT)在计算机视
转载
2024-05-29 09:59:18
65阅读
近年来,Transformer在视觉领域吸引了越来越多的关注,随之也自然的产生了一个疑问:到底CNN和Transformer哪个更好?当然是强强联手最好。华为诺亚实验室的研究员提出一种新型视觉网络架构CMT,通过简单的结合传统卷积和Transformer,获得的网络性能优于谷歌提出的EfficientNet,ViT和MSRA的Swin Transformer。论文以多层次的Transformer为
转载
2024-03-04 09:33:40
123阅读
用Transformer完全代替CNN1. Story2. Modela 将图像转化为序列化数据b Position embeddingc Learnable embeddingd Transformer encoder3. 混合结构4. Fine-tuning过程中高分辨率图像的处理5. 实验 1. Story近年来,Transformer已经成了NLP领域的标准配置,但是CV领域还是CNN(
转载
2024-04-16 10:07:34
312阅读