2006年的ICDM(the IEEE International Conference on Data Mining) 上,评选出了数据挖掘领域的十大算法,分别是1,C4.5    C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。
算法,可以说是很多技术的核心,而数据挖掘也是这样的。数据挖掘中有很多的算法,正是这些算法的存在,我们的数据挖掘才能够解决更多的问题。如果我们掌握了这些算法,我们就能够顺利地进行数据挖掘工作,在这篇文章我们就给大家简单介绍一下数据挖掘的经典算法,希望能够给大家带来帮助。1.KNN算法KNN算法的全名称叫做k-nearest neighbor classification,也就是K
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、数据挖掘定义及用途1.定义:2.用途:二、决策树1.理论知识(1)概念(2)算法一般过程(C4.5为例)2.小结三、关联规则1.概述2.关联分析3.小结四、聚类分析(K-means)1.K-means算法(K-均值算法)2.小结五、数据库中的知识发现(KDD)1.KDD过程2.KDD应用六、评估技术1.数据集划分2.
一般来说,数据挖掘算法包含四种类型,即分类、预测、聚类、关联。前两种属于有监督学习,后两种属于无监督学习,属于描述性的模式识别和发现。有监督学习 有监督的学习,即存在目标变量,需要探索特征变量和目标变量之间的关系,在目标变量的监督下学习和优化算法。例如,信用评分模型就是典型的有监督学习,目标变量为“是否违约”。算法的目的在于研究特征变量(人口统计、资产属性等)和目标变量之间的关系。分类算法 分类
C4.5是在ID3算法的基础上发展而来的,是对ID3算法的一种优化。其采用信息增益率作为选择分裂属性的标准,而ID3是以信息增益为标准。这是根本的不同之处,也是优化所在。C4.5相对于ID3的改进包括:①通过信息增益率选择分裂属性,克服了ID3算法中通过信息增益倾向于选择拥有多个属性值的属性作为分裂属性的不足; ②能够处理连续型数据,克服了ID3算法只能处理离散型数据的不足;③在构造决策
数据挖掘十大经典算法一、 C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算
一、数据挖掘算法定义数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类
原创 2021-03-06 11:08:00
160阅读
1.C4.5算法2. k 均值聚类算法3.支持向量机4. Apriori 关联算法5.EM 最大期望算法 Expectation Maximization6、PageRank 算法7、AdaBoost 迭代算法8、kNN 算法9、朴素贝叶斯算法10、CART 分类算法。 补充:11.随机森林 12.维度降低算法13.渐变增强和AdaBoost1.C4.5算法C4.5是做什么的?
数据挖掘简介数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述
为了进行数据挖掘任务,数据科学家们提出了各种模型,在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。按照不同的目的,我可以将这些算法分成四类,以便你更好的理解。l 分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CARTl 聚类
1 数据挖掘数据挖掘(Data Mining,简称DM),是指从大量的数据中,挖掘出未知的且有价值的信息和知识的过程2 机器学习 与 数据挖掘数据挖掘类似的有一个术语叫做”机器学习“,这两个术语在本质上的区别不大,如果在书店分别购买两本讲数据挖掘和机器学习的书籍,书中大部分内容都是互相重复的。具体来说,小的区别如下:机器学习这个词应该更侧重于技术方面和各种算法,一般提到机器学习就会想到语音识别,
关于数据挖掘算法有很多,而这些算法都是能够帮助我们去解决很多的问题,所以说我们要重视数据挖掘算法的学习。在这篇文章中我们重点为大家介绍关于数据挖掘算法,希望这篇文章能够更好地帮助大家去理解数据挖掘。1.Apriori算法首先我们说的是The Apriori algorithm,Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推
一、什么是数据挖掘?人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。知识发现过程由以下三个阶段组成:①数
今天看了研究者July的文章,讲的是最恨对一个问题了解而不深入 ~  ~。切记,戒之。      在这篇文章中,我准备对数据挖掘的常用分类算法进行一一介绍,它们的实现,原理和适用问题及对比。首先补充一下监督学习,非监督学习和半监督学习的。常用的分类算法包括:决策树分类算法、朴素贝叶斯分类算法、基于支持向量机的SVM算法、神经网络算法、k近邻算法、模糊分类算法
数据挖掘作为一门新兴的多学科交叉应用技术,正在各行各业的决策支持活动中扮演着越来越重要的角色。数据挖掘概念的定义描述有若干版本,本文采用的是一个普遍接受的定义:数据挖掘,又称为数据库中的知识发现(KDD),它是一个从大量数据中抽取出未知的、有价值的模式或规律等知识的复杂过程。一个完整的数据挖掘过程主要包含数据选择、数据预处理、数据挖掘以及知识的表达和解释几个步骤。
   之前一直在看聚类算法,由此也就对数据挖掘这个领域颇感兴趣,刚好考完试有了时间能够好好琢磨琢磨。对于初学者而言,首先呢,对数据挖掘的一些点做如下总结: 1 初识数据挖掘    随着社会的发展,各行各业都建立起了各自的数据库体系,如何对这些数据实现最大化利用是很值得研究的问题,由此数据挖掘技术应运而生,个人理解的数据挖掘就是从大量的数据中发现数据
数据挖掘算法的分类   算法数据挖掘模型建立的核心,由于数据挖掘是一个交叉学科,因此其算法也集大成于一身,丰富多彩。  可根据算法分析数据的方式、算法来自的学科、算法所得结果的类型、学习过程的类型等,对数据挖掘算法进行分类。1. 根据算法分析数据的方式划分  一方面,数据挖掘能够通过OLAP分析和统计分析,实现对数据的多维度汇总,验证人们实现对数据所含信息的假设,实现验证驱动型数据
网上搜索了一堆,最后对这几个概念的联系与差别总结如下:1.数据挖掘:data mining,是一个很宽泛的概念。字面的意思是从成吨的数据里面挖掘有用的信息。这个工作BI(商业智能)可以做,数据分析可以做,甚至市场运营也可以做。利用Excel分析数据,发现了一些有用的信息,然后通过这些信息指导你的Business的过程也是数据挖掘的过程。 2.机器学习:machine learning,是
数据挖掘初识1.1 什么是数据挖掘数据挖掘是在大型数据存储辟中,自动地发现有用信息的过程。数据挖掘技术用来探査大型 数据库,发现先前未知的有用模式。数据挖掘还可以预测未来观测结果,例如,预测一位新的顾 客是否会在一家百货公司消费100美元以上。并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统査找个别的记录, 或通过因特网的搜索引擎査找特定的Web页面,则是信息检索(informat
最近看了很多关于数据挖掘的资料,在这里谈谈我对数据挖掘的一些理解,以及微软的数据挖掘理念。数据挖掘可以视为OLAP的补充性技术。OLAP经常为我们提供决策支持,或者为了证明某个假设而提供数据。而数据挖掘则用在对数据没有确定假设的情况下。例如:可以使用OLAP多维数据集检验在特定时间段内购买某项产品的客户都具有哪些特征。具体来说,可以证明地区在北京的客户在2011年10月购买汽车的时候,选择红色车的
  • 1
  • 2
  • 3
  • 4
  • 5