目录第一章 数据分析的概述1.数据分析的概述1.Python在数据分析方面的优势2.数据分析流程3.数据分析层次4.数据分析常见应用场景2. Python数据分析模块1. Numpy 模块1.定义:2.格式:3.生成数组4.数组统计方法2. Pandas 模块1.定义2.格式3. Series 结构4. DateFram 结构      
# Python数据分析入门 最近随着数据科学的迅速发展,Python已经成为了数据分析领域的重要工具。本文将带你入门Python数据分析,帮助你了解如何使用Python处理数据,做出有意义的分析。 ### 数据分析流程 在进行数据分析时,通常遵循以下几个步骤: ```mermaid flowchart TD A[数据收集] --> B[数据清洗] B --> C[数据探索
原创 2024-09-18 04:51:01
24阅读
SPSS数据分析全套教程(1)——SPSS概览什么是SPSS?社会科学统计软件包(Statistical Package for the Social Science,SPSS)是世界著名的统计分析软件之一。 经近40年的发展,在全球已拥有大量的用户。目前,SPSS使用Windows的窗口方式展示各种管理和分析数据的方法,可方便地用于特定的科研统计。本文章概要介绍SPSS的发展、主要版本、运行方式
Python数据分析课件Python学习;认识Python;Python优点有哪些;为什么选择Python进行数据分析;课程内容;1.1 Python环境搭建;1.2 Python安装;Window平台安装Python打开WEB浏览器访问/download/在下载列表中选择Window平台安装包,包格式为:python-XYZ.msi 文件 , XYZ 为你要安装的版本号。要使用安装程序 pyth
《Python数据分析与应用》第4章Pandas统计分析(1) 实训部分(源于大学课程python数据分析)实训1 读取并查看P2P网络贷款数据主表的基本信息1.利用read_csv读取P2P网络贷款数据主表 2.利用ndim属性查看主表维度、利用shape属性查看主表形状、利用memory_usage属性查看主表占用内存信息 3.利用describe方法对主表进行描述性统计分析 4.利用自定义函
客户是企业生存发展的根本,“客户就是上帝”是从古至今的至理名言。在信息化技术时代里,众多企业纷纷启动CRM客户管理系统,期望通过CRM系统的专业客户管理效能,提高企业整体客户管理效益。那么,如何利用CRM系统分析客户数据,从而提高客户价值呢?首先,懂得通过CRM系统录入客户资料。客户资料是存在CRM系统中的有效数据,但是数据众多,业务人员要想提高客户管理能力,就需要形成一个清晰的销售策略和客户分析
课程概述:近年来,数据分析师的需求非常大,90%的岗位技能需要掌握Python作为数据分析工具。Python语言的易学性、快速开发,拥有丰富强大的扩展库和成熟的框架等特性很好地满足了数据分析师的职业技能要求。本课程以案例驱动的方式讲解如何利用Python完成数据获取、处理、数据分析及可视化方面常用的数据分析方法与技巧。每章节都会引入Kaggle的项目和数据集,通过这些实际案例让学员轻松掌握使用Py
原创 2018-07-26 01:52:30
2497阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载 2023-10-03 08:52:17
206阅读
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创 2022-04-15 21:35:17
1588阅读
数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
一、TuShare简介和环境安装  TuShare是一个著名的免费、开源的python财经数据接口包。其官网主页为:TuShare -财经数据接口包。该接口包如今提供了大量的金融数据,涵盖了股票、基本面、宏观、新闻的等诸多类别数据(具体请自行查看官网),并还在不断更新中。TuShare可以基本满足量化初学者的回测需求  环境安装:pip install tushare。如果是老版本升级,可以用升级
转载 2023-12-09 14:01:58
40阅读
究竟什么是数据分析师?其定位和价值是什么?近年来互联网经济的蓬勃发展可谓给数据大规模累积提供了沃土,专家大拿们对大数据技术与应用的讨论和研究热度不减,对数据中隐含的深层价值及其应用的重视程度越来越高,更多人开始注重视量化分析、科学及高效地决策,这个过程中越来越多的企业就产生了对专业化的分析人才的需求。简单通用地讲,数据分析师是一类能够在建立明确分析目标基础上对数据进行搜集、加工、分析并挖掘出有价值
 注:部分文字来自官网,感觉翻译过来就变味了,所以直接上英文了。       谷歌分析(Google Analytics,以下简称GA),按我的理解就是谷歌提供的一个数据分析统计的平台。       GA除了进行传统的网页统计之外,现在也支持对移动应用的统计和分析了, Google Analytics 发布的
一、什么是AARRR模型,以及为什么它如此受欢迎?让我们深入了解Dave McClure的模型。AARRR代表:用户拉新Acquisition 用户激活Activation 用户留存Retention 用户推荐Referral 商业收入Revenue二 、RARRA模型是托马斯·佩蒂特Thomas Petit和贾博·帕普Gabor Papp对于海盗指标-AARRR模型的优化。RARRA模型突出了用
转载 2023-10-03 11:30:01
222阅读
1. 什么是数据分析1) 数据分析发展背景进入到 21 世纪以后,伴随着互联网的迅速发展,大数据应运而生,越来越多的数据被不断的挖掘出来,形成了“数据为王”的时代。就拿我们自己举例子,比如你的购物习惯、你的喜好等等,这些都会组成数据,对你购物习惯的分析会帮助购物平台更精准的推荐商品,这只是数据分析应用的冰山一角,它还可以应用到金融领域、交通领域、畜牧业等等。随着数据规模越来越庞大,单靠人力重复的脑
对于一个ML问题,解决思路通常是:拿到数据后怎么了解数据(可视化) 选择最贴切的机器学习算法 定位模型状态(过/欠拟合)以及解决方法 大量极的数据的特征分析与可视化 各种损失函数(loss function)的优缺点及如何选择首先拿到数据要进行***数据分析***数据准备->数据清洗->数据重构->数据分析 典型的重构就是归一化可以利用降维算法来实现数据的处理,用更少的特征描述原
转载 2023-08-31 13:00:09
393阅读
数据分析一、数据分析——基础1.什么是数据分析1.1数据分析的概念1.2数据分析的应用1.3数据分析方法1.3.1对比分析1.3.2同比分析1.3.3环比分析1.3.4 80/20分析1.3.5 回归分析1.3.6 聚类分析1.3.7时间序列分析1.4数据分析工具1.5数据分析流程二、数据分析——numpy2.1numpy概述2.1.1numpy介绍2.2数据预处理2.2.1数据读写2.2.1.
  数聚智慧决策门户SDP (Smart Decision Platform)是企业级的商业智能数据门户,以信息的民主与集中来改善企业的管理水平,保护企业已有报表与数据分析资产。SDP通过兼容开放的特性、灵活的用户权限配置、便捷的报表访问体验以及高效的互动交流方式,实现企业报表的高度集成、权限管控与协同共享。  数聚智慧决策门户是数聚公司在总结了为多家著名企业实施商业智能BI(Business I
1.引言前面我们学会了指数哥伦布解码,翻翻白皮书,依靠这个知识,基本上我们就能一口气解码完SPS,PPS,SEI,Slice Header了。在Slice Data里会出现一些ae(v)类型的熵编码,这个我们后面再看 。 接下来的重点就是,认真的看一下解码出来的每个参数的作用。这些参数在后续的计算YUV的过程中都会起到对应的作用。 首先,我们从SPS开始。2. SPSSPS,即sequence p
  • 1
  • 2
  • 3
  • 4
  • 5