使用的是python3和python2在用户级别的环境变量中的添加 环境变量图示 复制命名 备注:由于python2.6.1无pip,而本人使用的过程项目对于python2没有安装需求,所以这里没有安装这里对python2.6.1中,复制python.exe文件,命名为
机器学习作为近几年的一项热门技术,不仅凭借众多“人工智能”产品而为人所熟知,更是从根本上增能了传统的互联网产品。在近期举办的2018 ArchSummit全球架构师峰会上,个推首席数据架构师袁凯,基于他在数据平台的建设以及数据产品研发的多年经验,分享了《面向机器学习数据平台的设计与搭建》。一、背景:机器学习在个推业务中的应用场景作为独立的智能大数据服务商,个推主要业务包括开发者服务、精准营销服务和
采用JDBC批处理(开启事务、无事务)采用JDBC批处理时需要注意一下几点:1、在URL连接时需要开启批处理、以及预编译 String url = “jdbc:mysql://localhost:3306/User?rewriteBatched -Statements=true&useServerPrepStmts=false”;2、PreparedStatement预
centos数据系统实时同步
原创 2020-04-16 14:02:23
1130阅读
前言在开发过程中可能会碰到某些独特的业务,比如查询全部表数据数据量过多会导致查询变得十分缓慢。虽然在大多数情况下并不需要查询所有的数据,而是通过分页或缓存的形式去减少或者避免这个问题,但是仍然存在需要这样的场景,比如需要导出所有的数据到excel中,导出数据之前,肯定需要先查询表中数据,这个查询的过程中数据量一旦过大,单线程查询数据会严重影响程序性能,有可能过长的查询时间导致服务宕机。现在模拟使
转载 2023-06-15 09:47:19
1380阅读
这里先简单介绍下hive,Impala、HBase: hive: hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。Hive支持HSQL,是一种类SQL。Impala: Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,
如何处理大数据量的查询 在实际的任何一个系统中,查询都是必不可少的一个功能,而查询设计的好坏又影响到系统的响应时间和性能这两个要害指标,尤其是当数据量变得越来越大时,于是如何处理大数据量的查询成了每个系统架构设计时都必须面对的问题。本文将从数据数据查询的特点分析出发,结合讨论现有各种解决方案的优缺点及其适用范围,来阐述J2EE平台下如何进行查询框架的设
【51CTO精选译文】对于Sun最新发布的Java EE 6平台,过去51CTO已经陆续介绍了平台的主要目标,以及三大新技术中的JAX-RS以及上下文和依赖注入。本文介绍第三个技术:Bean验证。 验证数据是应用程序生命周期中一个常见的任务,例如,在应用程序的表示层,你可能想验证用户在文本框中输入的字符数最多不超过20个,或者想验证用户在数字字段输入的字符只能是数字。 开发人员在应
前言在我们的项目正式上线时,经常会遇到因为用户访问人数太多、并发太高或者用户恶意访问导致服务器崩溃的问题,今天在这里和大家一起讨论在实际项目中如何在多个层面上对我们的应用进行优化,并防止用户恶意访问。数据库层优化1.我们可以对数据库配置文件进行优化,比如修改数据库最大连接数、数据库连接超时时间、是否开启查询缓存等,一般根据项目实际需求来配置。2.我们还可以对数据库表结构进行优化,比如对不同的表选
在处理“java大数据量”问题时,首先需要理解大数据量所带来的挑战。通常来说,当我们面临海量数据时,性能、存储、穿透率等方面都可能成为瓶颈。这些问题可能出现在各类业务场景中,比如日志处理、实时数据分析和大规模数据挖掘等。在这篇文章中,我们将深入探讨如何有效地解决“java大数据量”的问题。 ### 背景描述 随着互联网的飞速发展,各行业的数据量呈几何级数增长。为了从中提取有价值的信息,很多企业
原创 5月前
59阅读
一、查询语句书写要点:1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id from t where
转载 2023-09-29 10:40:44
850阅读
序 最近可能会遇到大量数据导出Excel的场景,今天趁现在需求告一段落来做下技术预研,然后这里就顺便分享给大家。一、数据量预判因为我们是做物联网的,这里要导出的数据就是设备的上报数据。客户说要这些数据导出成excel进行分析,又或是其他什么原因,咱不管。咱就分析下数据量,目前设备数量1500,2小时上报一次数据(最小可设置为半小时),要求可以导出3年的数据数据量初步估算:1500 * 12 *
2019独角兽企业重金招聘Python工程师标准>>> 大数据处理问题 场景:我说的大数据量处理是指同时需要对数据进行检索查询,同时有高并发的增删改操作; 对于大数据量处理,如果是互联网处理的话,一般分为下面阶段:第一阶段:所有数据都装入一个数据库,当数据量大了肯定就会出现问题,如几百万条数据,那时一个检索查询可以让你等你分钟;第二阶段:那时肯定想做缓存机制,确实可
在实际场景中会遇到这样的一种情况:数据量很大,而且还要分页查询,如果数据量达到百万级别之后,性能会急剧下降,导致查询时间很长,甚至是超时。接下来我总结了两种常用的优化方案,仅供参考。但是需要注意的是有个前提:主键id是递增且数据有序。
转载 2023-06-26 18:29:48
461阅读
大数据迁移——Python+MySQL引言方法一:数据库复制 ——最糟糕方法二:数据库转存——最蜗牛方法三:数据库备份——最尬速方法四:内存操作Python+MySQL——最火箭 引言最近,因为课题组更换服务器,有一批数据需要做数据迁移,数据量大约150G-200G,一部分数据存储在原来服务器的MySQL上,另外一部分数据以txt文件存储在硬盘上。现在,我需要将这些数据全部迁移存储在新服务器的M
转载 2023-08-11 14:25:11
464阅读
对于非常大的数据模型而言,分页检索时,每次都加载整个数据源非常浪费。通常的选择是检索页面大小的块区的数据,而非检索所有的数据,然后单步执行当前行。本文演示ASP.net的DataGrid和Sql Server 实现大数据量下的分页,为了便于实现演示,数据表采用了Northwind数据库的Orders表(830条记录)。如果数据表中有唯一的自增索引,并且这个字段没有出现断号现象。检索页面大小的块区数
转载 2024-08-28 16:12:12
0阅读
本文章只针对Excel2007版本POI读取Excel有两种模式,一种是用户模式,一种是SAX事件驱动模式,将xlsx格式的文档转换成CSV格式后进行读取。用户模式API接口丰富,使用POI的API可以很容易读取Excel,但用户模式消耗的内存很大,当遇到很大sheet、大数据网格,假空行、公式等问题时,很容易导致内存溢出。POI官方推荐解决内存溢出的方式使用CVS格式解析,即SAX事件驱动模式。
转载 2023-07-11 13:50:31
478阅读
老板项目需要从类似日志的文本文件中提取出元数据,然后放到数据库中为数据挖掘做处理。设计数据库为两张表,初步估计第一张表是千万级的数据,第二张表是亿级数据。面对这么大数据量的导入需求,分析设计高效的程序就显得很有必要了,磨刀不误砍柴功嘛! 首先考虑的是提高IO效率,毕竟现在计算机cpu高主频,多核心的环境下硬盘IO才是瓶颈。在文件读取上提高程序效率,比如用
转载 2024-07-03 09:57:53
55阅读
## Java大数据量分页如何实现 在处理大规模数据时,分页是一种常用的技术。它能有效地提高数据查询和数据显示的效率,减少对系统资源的消耗。本文将介绍如何Java 中实现大数据量的分页,涵盖基本概念、数据库查询优化和代码实现等内容。 ### 一、基本概念 分页的基本思想是将数据分成若干个“页”,每次只获取当前页的数据。这种方式在用户浏览数据时尤为重要,可以提升用户体验,同时减轻服务器负担
原创 2024-08-09 13:21:17
161阅读
在现在大数据背景下,Java应用程序面临着各种性能挑战,尤其是在处理大数据量时,如何有效筛选数据变得至关重要。本文将详细探讨在Java环境下筛选大数据量的流程,分析问题出现的根因,并给出切实可行的解决方案。 ## 问题背景 在一次项目开发过程中,我的团队遇到了一些性能瓶颈。用户在查询大规模用户数据时,响应时间不断增加,最终导致用户不满。我们需要确保我们的查询在高负荷情况下同样能够高效运行。
原创 5月前
11阅读
  • 1
  • 2
  • 3
  • 4
  • 5