网上有很多介绍Hadoop安装部署的资料,这篇文章不会向大家介绍Hadoop的安装及部署方法,我会重点向大家介绍Hadoop实现的基本原理,这样当我们今后学习Hadoop生态相关的知识时可以快速入门。        Hadoop是什么Hadoop是一个由Apache基金会
大数据技术总结大纲概念应用难题技术大数据架构1. 数据收集Sqoop/CanalFlumeKafka2. 数据存储HDFSHBaseKudu3. 分布式协调资源管理ZookeeperYarn4. 数据计算MapReduceSparkImpala/PrestoStormFlink5. 数据分析HivePigSparkSQLMahout/MLLibApache BeamMOLAPHadoop发行
大数据技术原理应用学习笔记(十)SparkSpark简介SparkHadoop对比Spark生态系统Spark运行架构基本概念运行架构基本流程RDDRDD特性RDD依赖关系和运行过程Spark SQLSpark部署应用方式Spark编程实践 SparkSpark简介Spark的特点:运行速度快容易使用通用性运行模式多样Spark采用Scala语言1为Spark主要编程语言,同时还支持Java
转载 11月前
354阅读
1.试述MapReduce和Hadoop的关系。Google公司最先提出了分布式并行编程模型MapRedece ,Hadoop是一个实现了MapReduce模式的开源的分布式并行编程框架。Google的MapReduce运行在分布式文件系统GFS上,Google类似,HadoopMapReduce运行在分布式文件系统HDFS上。相对而言,HadoopMapReduce要比GoogleMapRed
第一课 大数据技术之Spark-环境和快速入门 文章目录第一课 大数据技术之Spark-环境和快速入门第一节 Spark 概述1.1 Spark介绍1.2 Spark和Hadoop选择1.3 核心模块介绍第二节 环境搭建和快速上手2.1 增加 Scala 插件2.2 快速上手wordcount2.3 wordcount优化用聚合的逻辑2.4 wordcount常用方法第三节 执行日志和常见异常3.
转载 4月前
27阅读
文章目录1. SparkSQL 概述1.1 SparkSQL 是什么1.2 Hive and SparkSQL1.3 SparkSQL 特点1.3.1 易整合1.3.2 统一的数据访问1.3.3 兼容 Hive1.3.4 标准数据连接1.4 DataFrame 是什么1.5 DataSet 是什么2. SparkSQL 核心编程2.1 新的起点2.2 DataFrame2.2.1 创建 Data
转载 2月前
25阅读
Hadoop大数据技术复习资料 钟兴宇1.选择题15空,共30分。Hadoop以HDFS(Hadoop Distributed File System,Hadoop 分布式文件系统)和MapReduce(Google MapReduce 的开源实现)为核心。hadoop三种安装方式:单体,伪分布式,完全分布式Hadoop集群启动时个进程的启动顺序:namenode,datanode,secondn
# Hadoop大数据技术应用 ## 引言 随着信息技术的迅速发展,数据的产生速度与日俱增,如何有效存储、处理这些庞大的数据成为了当今社会的一大挑战。Hadoop作为一种广泛应用的开源框架,凭借其强大的分布式存储处理能力,逐渐成为大数据领域的重要组成部分。 ## 什么是Hadoop? Hadoop是Apache软件基金会开发的一个开源框架,旨在支持分布式应用程序的开发执行。它能够以很
原创 16天前
7阅读
一、大数据原理大数据技术工程开发技术在架构上有很大的不同大数据技术当然更关系数据,相关架构也都是围绕着数据展开,重要要考虑如何存储、计算、传输大规模的数据等;而工程端的计算处理模型都是“输入-> 计算-> 输出”模型。最大的不同点就是工程技术程序是主体,数据是传输对象,将数据输入后工程才开始计算,然后输出结果。而面临PB级别的大数据计算任务,再去搬移数据,无论读取、传输、处理已经任何
一、 Hadoop的优化发展1.1 Hadoop的局限对于MapReduce和HDFS【不包含其它组件】:1、抽象层次低,仍需手工编写代码完成功能2、表达能力有限,MapReduce抽象的Map和Reduce函数,在降低开发复杂度的同时,也带来了表达能力有限的问题,导致一些任务无法用Map和Reduce函数来完成3、开发者自行管理作业间的依赖关系。一个作业Job只包含Map和Reduce两个阶段
大数据技术原理应用学习笔记(八)本系列历史文章Hadoop再探讨Hadoop的优化发展Hadoop1.0到Hadoop2.0不断完善的Hadoop生态系统HDFS2.0新特性HDFS HA(高可用性)HDFS FederationYARN——新一代资源管理调度框架MapReduce1.0中的缺陷YARN设计思路YARN体系结构ResourceManagerApplicationMasterN
大数据技术原理应用学习笔记(二)本系列历史文章HadoopHadoop简介Hadoop的特性Hadoop在企业中的应用架构Hadoop的版本Hadoop项目结构Linux和Hadoop安装Hadoop集群部署 HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。Hadoop简介Hadoop两大核心:分布式文件系统
基于大数据挖掘----浅谈大数据大数据挖掘一、大数据技术1.1大数据的定义大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从某种意义上来说,大数据是为了更经济地从高频率的、大容量的、不同结构和类型的数据中获取价值而设计的新一代构架和技术。 简而言之,大数据就是数据分析的前
目录2.1Hadoop简介HDFS(分布式文件系统)MapReduce(分布式并行编程框架)Hadoop的特点Hadoop的应用编辑Hadoop版本的变化2.2Hadoop项目结构TezSparkHivePigOozieZookeeperHBaseFlumeSqoopAmbari2.3Hadoop集群的部署和使用NameNodeDataNodeJobTracker,TaskTracker备份Sec
转载 2023-07-14 20:47:06
130阅读
数据挖掘常用算法及其在医学大数据研究中的应用 医院信息化的发展及云计算、大数据、物联网、人工智能等在医疗领域的应用,为医学数据的获取、存储及处理提供了极大便利。数据挖掘也随着计算机技术得到了广泛应用,从而提高了数据利用效率,拓展了知识发现的广度深度。目前,医院已积累了大量医疗相关数据。医学大数据数据挖掘的结合,能够帮助人们从存储的大体量、高复杂的医学数据中提取有
一、银行大数据平台建设背景及目标我们进行大数据平台建设有几个方面的背景。一是我们在信息化建设和数据分析的基础比较好;二是虽然在信息化建设过程中建设了比较完成的BI应用,但随着业务不断发展,这些解决方案已不能完全满足业务对于数据分析的需求;三是大数据技术的快速发展和应用为满足业务迫切需求提供了新的解决方案。我们在信息化道路上已经走过很长一段历程,通过软件系统将业务逻辑和业务流程进行电子化改造,实现了
原创 2021-04-22 09:49:09
382阅读
2.1 Hadoop概论创始人:Doug Cutting 1.简介: 开源免费;操作简单,极大降低使用的复杂性;Hadoop是Java开发的;在Hadoop上开发应用支持多种编程语言、不限于Java; Hadoop两大核心:HDFS+MapReduceHDFS:海量数据存储MapReduce:海量数据的处理 2.起源:原本是文本搜索库,模仿谷歌的搜索引擎;融
转载 2023-05-26 14:08:20
204阅读
5.大数据可能带来什么样的问题?如何应对这些隐患? 一、所带来的问题:(1)分布式系统大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。(2)数据存取大数据系统需要访问控 ...
转载 2021-09-14 15:08:00
162阅读
2评论
一、银行大数据平台建设背景及目标我们进行大数据平台建设有几个方面的背景。一是我们在信息化建设和数据分析的基础比较好;二是虽然在信息化建设过程中建设了比较完成的BI应用,但随着业务不断发展,这些解决方案已不能完全满足业务对于数据分析的需求;三是大数据技术的快速发展和应用为满足业务迫切需求提供了新的解决方案。我们在信息化道路上已经走过很长一段历程,通过软件系统将业务逻辑和业务流程进行电子化改造,实现了
原创 2021-05-03 16:15:37
674阅读
内容太多了,想着就这样大眼瞪小眼的也没办法,还不如整理一份。Tips:真要学习的就绕开吧,仅为考试所用,太难的内容没有
原创 2021-05-12 23:02:14
375阅读
  • 1
  • 2
  • 3
  • 4
  • 5