四、SVM支持向量机1、代价函数在逻辑回归中,我们的代价为:其中:如图所示,如果y=1,cost代价函数如图所示我们想让,即z>>0,这样的话cost代价函数才会趋于最小(这正是我们想要的),所以用图中红色的函数代替逻辑回归中的cost 当y=0时同样用代替最终得到的代价函数为:最后我们想要。之前我们逻辑回归中的代价函数为:可以认为这里的,只是表达形式问题,这里C的值越大,S            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-28 09:09:55
                            
                                75阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            二、逻辑回归1、代价函数可以将上式综合起来为:其中:为什么不用线性回归的代价函数表示呢?因为线性回归的代价函数可能是非凸的,对于分类问题,使用梯度下降很难得到最小值,上面的代价函数是凸函数的图像如下,即y=1时:可以看出,当趋于1,y=1,与预测值一致,此时付出的代价cost趋于0,若趋于0,y=1,此时的代价cost值非常大,我们最终的目的是最小化代价值,同理的图像如下(y=0):2、梯度同样对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-28 00:54:37
                            
                                138阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1.把算法的代价看作规模的函数之后,很容易看到一种必然出现的情况:   可能有一些算法,随着实例规模的增长,其时间(或空间)开销的增长非常快,   而另一些算法的开销函数随着规模增长而增长的比较慢,这两个函数关系称为算法的时间代价和空间代价。2.人们主要关注算法的最坏情况代价,有时也关注算法的平均代价,而算法的最乐观的估计基本上没有价值。3.对于算法的时间和空间性质,最重要的是其量级和趋势,这些是            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-17 23:25:30
                            
                                105阅读
                            
                                                                             
                 
                
                             
         
            
            
            
             损失函数,代价函数,目标函数区别损失函数:定义在单个样本上,一个样本的误差。代价函数:定义在整个训练集上,所有样本的误差,也就是损失函数的平均。目标函数:最终优化的函数。等于经验风险+结构风险(Cost Function+正则化项)。 目标函数和代价函数的区别还有一种通俗的区别:目标函数最大化或者最小化,而代价函数是最小化。 代价函数训练模型的过程就是优化代价函数的            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-06 21:44:35
                            
                                64阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            http://blog..net/sd9110110/article/details/52863390 一,什么是代价函数 我在网上找了很长时间代价函数的定义,但是准确定义并没有,我理解的代价函数就是用于找到最优解的目的函数,这也是代价函数的作用。 二,代价函数作用原理 对于回归问题,我们需            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2017-12-12 14:24:00
                            
                                203阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            Q:为什么会提及关于代价函数的理解?A:在 ML 中线性回归、逻辑回归等总都是绕不开代价函数。理解代价函数:是什么?作用原理?为什么代价函数是这个? 1、代价函数是什么?找到最优解的目的函数,这也是代价函数的作用。  损失函数(Loss Function )是定义在单个样本上的,算的是一个样本的误差。  代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-06-30 17:01:29
                            
                                61阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            现在我有一些数据集,就像上图中的叉。那么我想通过一个一次函数也叫线性回归函数(一条直线)去拟合这些数据,一次函数在没有确定之前,应该是这个样子的:   其中 θ0 和 θ1 都是未知量。现在关键就是如何求 θ0 和 θ1 这两个参数。θ0 和 θ1 可以取任意值,怎么取值才能让这条直线最佳地拟合这些数据呢?这就是代价函数登场的时刻了。   这就是一次函数的代价函数 J(θ0, θ1)。看到            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-29 19:59:29
                            
                                33阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深,在此做一个小结。 1. 什么是代价函数?假设有训练样本(x, y),模型为h,参数为θ。h            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-27 22:15:09
                            
                                98阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            可视化是直观查看数据分布的有效方式,当然python也不会缺席。之前的几篇推送我们聊过目前主要的python绘图包及数据分析方法。适用于任何学科| 10个好用的 Python数据可视化库好看又好用的python可视化包4种绘制带误差线的柱形图今天的推送就探索一下基础函数的绘制方式,例如下图:Matplotlib Matplotlib 是第一个Python数据可视化库,是python社区中            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-10-30 14:55:12
                            
                                42阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            1.Softmax回归概念Softmax回归可以用于多类分类问题,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的  个可能值进行了累加。注意在Softmax回归中将  分类为类别  的概率为:以下公式中, 是示性函数, 。举例来说,表达式  的值为1 ,的值为 0。我们的代价函数为:对于  的最小化问题,目前还没有闭式解法。因此,我们使            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-06-28 07:51:56
                            
                                23阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            SAD(Sum of Absolute Difference)=SAE(Sum of Absolute Error)即绝对误差和 SATD(Sum of Absolute Transformed Difference)即hadamard变换后再绝对值求和 SSD(Sum of Squared Dif...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2014-07-22 10:57:00
                            
                                144阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            什么是代价函数?假设有训练样本(x, y),模型为h,参数为θ。h(θ) = θTx(θT表示θ的转置)。(1)概况来讲,任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。因此很容易就可以得出以下关于代价函数的性质:对于每种算法来说,代价函数不是唯一的;代价函数是参数θ的函数;总的代价            
                
         
            
            
            
            SAD(Sum of Absolute Difference)=SAE(Sum of Absolute Error)即绝对误差和 SATD(Sum of Absolute Transformed Difference)即hadamard变换后再绝对值求和 SSD(Sum of Squared Dif...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2014-07-06 13:21:00
                            
                                261阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            代价函数有助于我们弄清楚如何把最有可能的函数与我们的数据相拟合。比如在模型训练中我们有训练集(x,y),x表示房屋的面积,y表示房屋的价格,我们要通过线性回归得到一个函数hθ(x)(被称为假设函数),以x作为自变量,y作为因变量,用函数来预测在给定的房屋面积下的价格。            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-05-30 07:23:45
                            
                                179阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            文章目录1.什么是代价函数2. 代价函数的常见形式2.1 均方误差2.2交叉熵2.3神经网络中的代价函数3. 代价函数与参数4.代价函数与梯度4.1 线性回归模型的代价函数对参数的偏导数4.2 逻辑回归模型的代价函数对参数的偏导数 代价函数(有的地方也叫损失函数:Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-17 09:01:10
                            
                                46阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            代价函数代价函数(cost function,loss function)作用是确定函数中的最优参数,使得拟合数据点的误差达到最小,即拟合效果最好。  当参数和取不同数值时,假设函 的取值也会相应的改变,以至于损失函数的数值也会发生相应的变化。而我们的目的时让假设函数的拟合效果达到最好,即损失函数䣌数值越小越好。因此我们可以以,和 为坐标轴来建立图像,如下图            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-20 11:19:50
                            
                                132阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目标函数,损失函数,代价函数 tags: 机器学习 1. 经验风险与结构风险 经验风险指的是模型对数据的拟合程度,拟合程度越高,经验风险越小。(其实对应的就是代价函数) 结构风险指的是对模型复杂度的评估,模型越复杂,结构风险越大。(其实对应的就是目标函数) 只考虑将经验风险最小化,会出现过拟合现象。 ...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2021-09-20 16:59:00
                            
                                1601阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            模型描述例子波士顿房价预测使用到的变量:m:数据集的数量x:表示输入特征y:输出的目标预测变量(x,y):一个训练样本(x(i),y(i)):第i个训练样本机器学习目标是通过输入训练集,再通过机器学习算法,输出一个函数,通过这个函数实现提供输入变量返回输出变量。    线性拟合函数(单变量线性回归)对于房价预测,减少现实房价与预估房价之间的差的平方和的大小(            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2022-07-05 09:25:31
                            
                                195阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            模型描述例子波士顿房价预测使用到的变量:m:数据集的数量x:表示输入特征y:输出的目标预测变量(x,y):一个训练样本(x(i),y(i)):第i个训练样本机器学习目标是通过输入训练集,再通过机器学习算法,输出一个函数,通过这个函数实现提供输入变量返回输出变量。    线性拟合函数(单变量线性回归)对于房价预测,减少现实房价与预估房价之间的差的平方和的大小(            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2022-07-05 09:26:29
                            
                                174阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            一、代价函数概述机器学习的模型分为能量模型和...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2020-04-01 22:46:00
                            
                                792阅读
                            
                                                                                    
                                2评论