上一章节,我们在使用图像轮廓发现的时候使用了图像边缘检测,一次来提高图像轮廓发现的准确率。事实上在计算机的各个领域都有图像边缘检测的身影。边缘检测一大优点就在于可以大幅度减少数据量,并且提出可以认为不相关的信息,保留了图像的结构属性。边缘检测的方法有很多,但是绝大部分都可以分为两大类,第一类是基于搜索,也就是通过寻找图像一阶导数中的最大值和最小值来检测边界,通常是定位在梯度最大的方向。其次是
一、任务需求计算出二值图中圆弧图形与圆心之间的夹角,找出圆弧的起点和终点角度,并进行可视化。假设圆心已知(在前期任务中通过霍夫圆检测得来,具体参考) 原图如下所示:为二值图二、问题分析在二值图中计算圆弧图形的起点角度与终点角度存在一定困难(opencv没有直接提供相关api接口),需要自行找出圆弧图形的所有像素,并计算其与圆心的夹角。然后找出夹角的最大值与最小值。三、基本实现步骤1、读取图像为灰
1.轮廓提取 FindContours在二值图像中寻找轮廓 int cvFindContours( CvArr* image,                     CvMemStorage* storage,                     CvSeq** first_contour,                       &nb
/** * 矩形拟合 * @param mats * @return */vector PublicCardFrameDetection::RectContainFit(vector rects,Mat src) { //获取图像中心坐标 int src_w = src.cols; int src_h = src.rows; Point2i center = (Point2
原创 2022-05-29 01:14:46
259阅读
我们都知道java是面向对象的语言,数据多了放对象里,那么对象多了放哪里呢?集合或者数组中那么集合和数组有什么区别呢?数组一旦初始化长度是固定的,集合的长度是可变的数组只能存储一种类型的对象和基本数据,集合能存储多种不同类型的对象在平常开发张最常用的集合体系有三种一个是List(ArrayListLinkedListvector)还有一个set(HashSetTreeSet)和map(HashTa
原创 2018-02-01 11:31:21
769阅读
本次笔记要整理的内容是:通过OpenCV的dnn模块来调用OpenCV自带的inception5h模型,并实现物体识别。该模型可识别的类别总共有1000类,包含动物、日常用品、交通工具等等,范围非常广泛。下面通过代码逐步整理。首先,我们需要加载模型,并设置计算后台和目标设备。//加载opencv自带的tenserflow模型实现图像分类 const string tf_net_model_pat
转载 2024-04-11 23:46:53
107阅读
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数 rgb = io.imread(f) # 读取图片 gray =
转载 2024-03-03 10:11:20
157阅读
OpenCV训练分类器 一、简介     目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。     分类器中
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类器训练人脸检测的样本与相关文件1 、opencv里的分类器大概介绍:  OpenCV中有两个程序可以训练级联分类器: opencv_haartraining and opencv_traincascade``。 ``opencv_tra
利用Canny边缘检测算子进行边缘检测的原理及OpenCV代码实现 Canny算子是John Canny在1986年发表的论文中首次提出的边缘检测算子,该算子检测性能比较好,应用广泛。Canny算子进行边缘检测的原理和步骤如下:⑴消除噪声。边缘检测的算法主要是基于图像强度的一阶和二阶微分操作,但导数通常对噪声很敏感,边缘检测算法常常需要根据图像源的数据进行预处理操作,因此采用滤波器来改善
转载 10月前
40阅读
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类器3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类器一、项目结构二、源码1.程序入口int main(void) { //int clusters=1000; //Classfication_SVM c(clusters); 特征聚类 //c.Tra
K-Nearest Neighbors该算法存储所有的训练样本(已知标签),然后通过分析新给的样本(标签未知)与已知标签的训练样本的相似度,选出其中的K个最相似的训练样本进行投票得到新样本的标签,并计算加权和等。 该方法有时被称为是“learning by example”,因为他总是根据新样本的特征向量与已知标签的样本特征向量的相似度来判断新样本的类别。 CvKNearest class&
OpenCV的数据类型OpenCV的数据类型基础类型Point类Scalar类Size类Rect类RotatedRectMatx固定矩阵类Vec固定向量类Complex复数类辅助对象cv::TermCriteria 条件终止类cv::Range类cv::Ptr模板和垃圾收集cv::Exception类和异常处理cv::DataType<>模板cv::InputArray和cv::Ou
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类器 流程:    收集样本,处理样本     训练分类器     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
文章目录轮廓发现介绍轮廓的定义轮廓发现定义相关APIfindContours发现轮廓drawContours绘制轮廓代码示例 轮廓发现介绍轮廓的定义一个轮廓代表一系列的(像素),这一系列的构成一个有序的集,所以可以把一个轮廓理解为一个有序的集。轮廓发现定义轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果相关APIfindContours发
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、角是什么?二、Harris角点检测算法:cornerHarris()三、Shi-Tomasi角点检测算法:goodFeaturesToTrack()四、亚像素级角点检测:cornerSubPix()总结 前言笔者本科时候有幸接触了OpenCV3.2.0版本的学习,后因考研压力不得不暂时停下学习的脚步,现在考研任务结
转载 2024-04-19 14:11:05
64阅读
图像的几何变化主要包括平移、旋转、缩放等。这里主要介绍使用remap()函数来实现上述过程。实际上图像的缩放用resize()函数实现更好,因为remap()意义是将一幅图像映射到另一幅图像,映射关系可以自由设定,但要求两幅图像的尺寸、类型相同,而resize()可以设定输出图像的尺寸。 remap()函数原型: void remap(InputArray src, OutputArray dst
一、简介       目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在
  • 1
  • 2
  • 3
  • 4
  • 5