1. 模型Model1.1 概述1. Flask模型使用 2. 数据迁移 3. 模型常用的字段类型和常用约束 4. 模型单表操作 5. 创建User表,字段:id,name, passwd, age 1. 实现注册功能 2. 实现登录功能1.11 Flask模型Flask默认并没有提供任何数据库操作的API 我们可以选择任何适合自己项目的数据库来使用 Flask中可以自己的选择用原生语
ELMo和GPT认识ELMO模型本质: Embeddings from Language Models.解决的问题: 多义词的问题结构图结构:最下层是embedding层中间是双向的LSTM最上层是词向量表征 2L+1 L —> 层数ELMo的预训练过程第一个阶段: 预训练语言模型第二个阶段: 根据下游任务, 去动态调整word embedding的向量表示,然后将去融入到之前的向量中, 就
作者 | Abhinav Sagar翻译 | 申利彬校对 | 吴金笛 本文旨在让您把训练好的机器学习模型通过Flask API 投入到生产环境 。 当数据科学或者机器学习工程师使用Scikit-learn、Tensorflow、Keras 、PyTorch等框架部署机器学习模型时,最终的目的都是使其投入
转载 2024-01-10 16:31:25
127阅读
一.项目准备  1.新建项目目录students,并创建虚拟环境 mkvirtualenv students   2.安装依赖环境 pip install flask==0.12.4 pip install redis pip install flask-session pip install flask-script pip install flask-mysqldb pip instal
Tensorflow的部署:TensorFlow Serving   目录  TensorFlow Serving 安装  TensorFlow Serving 模型部署  Keras Sequential 模式模型部署  自定义 Keras 模型部署  在客户端调用以 TensorFlow Serving 部署模型  Python 客户端示例  
在我们使用bert预分类模型微调之后(可以参考我前面写的文章),需要对项目进行支持,那就需要分类模型落地提供服务,这篇文章介绍python调用bert模型,提供服务。 参考:https://github.com/xmxoxo/BERT-train2deploy 在后期部署的时候,需要一个label2id的字典,所以要在训练的时候就保存起来,在convert_single_example这个方法里增
转载 2023-07-08 11:37:13
221阅读
对于数据科学项目来说,我们一直都很关注模型的训练和表现,但是在实际工作中如何启动和运行我们的模型模型上线的最后一
原创 2024-05-15 11:03:35
114阅读
计算机视觉研究院专栏作者:Edison_G在目标检测模型的training time, inference speed, 和accuracy之间寻找trade off,重点关注如何在保持另外两个指标的情况下,减少模型的训练时间。启示:1、单纯的数据扩增能增加数据数量,但也会降低数据质量,导致需更多的训练时间才会收敛;2、根据Linear Scaling Rule,学习率与batchsize一般情况
## NLP模型部署:从训练到应用 自然语言处理(NLP)作为一种重要的人工智能技术,已经在我们的日常生活中得到了广泛应用。随着NLP模型的不断进步和成熟,合理地将这些模型部署到生产环境中变得极为重要。本文将探讨NLP模型部署过程以及其中的关键技术。 ### 什么是NLP模型部署NLP模型部署是将训练好的NLP模型集成到实际应用程序中的过程。这包括将模型转化为可供使用的格式、设置API
原创 2024-09-08 03:39:03
128阅读
探索NLP模型的未来:Happy-zyy/NLP-Model去发现同类优质开源项目:https://gitcode.com/在人工智能领域中,自然语言处理(Natural Language Processing, NLP)是不可或缺的一环,它赋予了机器理解、生成和解析人类语言的能力。 是一个专注于NLP模型开发与应用的开源项目,致力于为开发者提供易用且高效的解决方案。项目简介该项目由Happy-z
 一、整体功能概述这两段代码组合起来实现了一个 深度学习图像分类推理系统:代码一(服务端): 使用 Flask 搭建 HTTP 服务器,加载一个 PyTorch 训练好的模型(如 ResNet18),接受图片上传请求,并返回分类预测结果(前 3 名类别与概率)。代码二(客户端): 使用 requests 库向服务端发送图片(HTTP POST 请求),获取预测结果并打印。这种结构在工业场
转载 4天前
398阅读
一、需求背景:人工智能训练好的模型model,需要放到服务器上,作为基础能力提供给应用侧,否则model只能中电脑本地处理。那么怎么解决这个部署到服务器上的问题呢?二、解决思路:web应用部署,有3种主流的方式,1.Django:大而全,集成了很多组件,属于全能型、重量级框架。2.Falsk:小而轻,极容易上手,第三方提供的组件多,加起来可以完全覆盖Django。3.Torando:高并发性能强,
NLP论文(情感分析):《Deep Convolution Neural Networks for Twitter Sentiment Analysis》 笔记论文介绍模型结构文章翻译AbstractVI. CONCLUSION相关的笔记相关代码pytorchtensorflowkeraspytorch API:tensorflow API 论文NLP论文笔记合集(持续更新)原论文:《Deep
Spark 有什么缺点?这个缺点我们之前已经提到过一个——无论是 Spark Streaming 还是 Structured Streaming,Spark 流处理的实时性还不够,所以无法用在一些对实时性要求很高的流处理场景中。这是因为 Spark 的流处理是基于所谓微批处理(Micro-batch processing)的思想,即它把流处理看作是批处理的一种特殊形式,每次接收到一个时间间隔的数据
在前面所有的模型训练和预测中,我们训练好的模型都是直接通过控制台或者 Jupyter Notebook 来进行预测和交互的,在一个系统或者项目中使用这种方式显然不可能,那在 Web 应用中如何使用我们训练好的模型呢?本文将通过以下四个方面对该问题进行讲解:微服务架构简介;模型的持久化与加载方式;Flask 和 Bottle 微服务框架;Tensorflow Serving 模型部署
今天我们要开发一个用来识别垃圾短信(邮件)的NLP机器学习模型,并将其部署Flask的Web平台上,我们的NLP机器学习系统的开发过程是这样的:1.线下训练模型-->2.将模型部署成一个web服务-->3.线上实现预测。开发一个NLP模型,并在线下完成训练将训练好的模型部署成一个web服务在线供用户使用当我们开发好一个机器学习模型后,如何来部署模型,如何让其他用户方便的使用它呢?目
# 使用Flask部署PySpark模型 随着数据科学和机器学习的快速发展,如何将经过训练的模型有效地部署到生产环境中已成为一个重要话题。本文将介绍如何使用Flask框架来部署一个基于PySpark的机器学习模型。希望读者能够通过这篇文章快速掌握基本流程。 ## 环境准备 首先,需要确保已经安装了 Flask 和 PySpark。可以使用以下命令安装所需的库: ```bash pip in
原创 2024-09-05 03:40:54
29阅读
# 如何通过 Flask 部署 PyTorch 模型 在快速发展的深度学习领域,能够将训练好的模型部署为 Web 应用是非常重要的。本文将引导您学习如何使用 Flask 部署 PyTorch 模型。我们将分步进行,并介绍每个步骤所需的代码。 ## 整体流程 以下是一个部署 PyTorch 模型Flask 的简要流程: | 步骤 | 描述
原创 8月前
136阅读
# 使用Flask部署PyTorch模型 随着人工智能的快速发展,深度学习框架PyTorch在实现和训练神经网络方面表现出色。然而,在将训练好的模型应用于生产环境之前,我们需要将其部署为一个可用的服务。本文将介绍如何使用Flask框架来部署PyTorch模型。 ## 什么是FlaskFlask是一个基于Python的轻量级Web框架,它简单易用且功能强大。它可以帮助我们快速构建一个Web
原创 2023-07-19 11:49:16
398阅读
  • 1
  • 2
  • 3
  • 4
  • 5