2.1简单线性回归模型y与x之间的关系假设\(y=\beta_0+\beta_1x+\varepsilon\)\(E(\varepsilon|x)=0\)\(Var(\varepsilon|x)=\sigma^2~则~Var(y|x)=\sigma^2\)2.2回归参数的最小二乘估计回归系数 \(\beta_0,~\beta_1\)残差平方和\[S(\hat{\beta}_0,\hat{\beta
转载 2024-09-18 17:52:43
60阅读
方差是用来度量随机变量X 与其均值E(X) 的偏离程度。   【随机变量的协方差】 在概率论和统计中,协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。定义如下: 当X,Y是同一个随机变量时,XX与其自身的协方差就是XX的方
阿平 | 作者1聚类分析聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布
当包含的因子(名义型或解释型因子)是解释变量时,我们关注的重点通常会从预测(建立回归模型)转向组别差异的分析,这种分析法称作方差分析(ANOVA)。ANOVA在各种实验和准实验设计的分析中都有广泛应用。用一个或多个定量变量来拟合和预测另一个定量变量,需要建立回归模型;当分类变量作为解释变量时,通常不会关注预测,而是关注分类变量带来的不同组间的差异,这时用方差分析。1、专业术语  例子:研究不同的治
第十章 方差分析10.1 方差分析引论10.1.1 方差分析及其有关术语1)方差分析: 通过各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响在例子中:检验饮料的颜色对销售量是否有显著影响,也就是检验四种颜色饮料的平均销售量是否相同2)因素或因子(): 所要检验的对象称为因子在例子中:要分析饮料的颜色对销售量是否有影响,颜色是要检验的因素或因子3)水平(): 因
转载 10月前
164阅读
  1.最小二乘法则假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系。即对应的线性模型写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-XA。【Y和A是列向量,X是矩阵】误差的平方的计算公式Xi为行向量,A为列向量。最小二乘法的目标就是取得最小的e对应的A,由于方差的计算是一个二次函数,即抛物线,对应存在一个最小值,即导数为0对应的A。所以对e求A的偏导数
转载 2024-05-19 07:24:06
46阅读
偏差和方差   在学习Ridge和Lasso之前,我们先看一下偏差和方差的概念。        机器学习算法针对特定数据所训练出来的模型并非是十全十美的,再加上数据本身的复杂性,误差不可避免。说到误差,就必须考虑其来源:模型误差 = 偏差(Bias)+ 方差(Variance)+ 数据本身的误差。其中数据本身的误差,可能由于记录过程中的一
## R语言回归方差最大因子法确定K值指南 ### 1. 引言 在现代数据分析中,选择合适的模型参数至关重要。回归是一种用于处理多重共线性问题的回归技术,而通过方差最大因子法确定最佳的K值(回归的惩罚参数)是获取最佳回归结果的关键一步。本指南将逐步指导您如何在R语言中实现这一过程。 ### 2. 流程概述 以下是实现“R语言回归方差最大因子法确定K值”的总体流程步骤: | 步骤
原创 2024-08-11 07:08:46
206阅读
多重共线性是使用线性回归算法时经常要面对的一个问题。在其他算法中,例如决策树和贝叶斯,前者的建模过程是逐步递进,每次拆分只有一个变量参与,这种建模机制含有抗多重共线性干扰的功能;后者干脆假定变量之间是相互独立的,因此从表面上看,也没有多重共线性的问题。但是对于回归算法,不论是一般回归,逻辑回归,或存活分析,都要同时考虑多个预测因子,因此多重共线性是不可避免需要面对的,在很多时候,多重共线性是一个普
一、一般线性回归遇到的问题    在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量时,最小二乘回归会有较小的方差时,容易产生过拟合时,最小二乘回归得不到有意义的结果模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征
一、方差分析1.1 主题因子、水平、单因素方差分析、双因素方差分析、协方差分析二、 基本概念方差分析: 通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。因素/因子: 所要检验的对象称为因素或因子。水平/处理: 因素的不同表现称为水平或处理。观测值: 在每个因子水平下得到的样本数据称为观测值。三、 单因素方差分析1.1 概念单因素方差分析: 是用来研究一个控制变量的不同水
转载 2024-05-07 18:51:32
225阅读
评价线性回归的指标有四种,均方误差(Mean Squared Error)、均方根误差(Root Mean Squared Error)、平均绝对值误差(Mean Absolute Error)以及R Squared方法。 sklearn中使用的,也是大家推荐的方法是R Squared方法。用 表示真实的观测值,用 表示真实观测值的平均值,用 表
一、一般线性回归遇到的问题    在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量时,最小二乘回归会有较小的方差时,容易产生过拟合时,最小二乘回归得不到有意义的结果模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征
回归技术原理应用                作者:马文敏回归分析及其SPSS实现方法回归分析(RidgeRegression)是一种改良的最小二乘估计方法,它是用于解决在线性回归分析中自变量存在共线性的问题。什么?共线性是什么?共
转载 2023-06-29 20:16:31
194阅读
介绍在本实验中,你将实现线性回归回归并了解其在数据上的工作原理。本次实验需要用到的数据集包括:ex1data1.txt -单变量的线性回归数据集ex1data2.txt -多变量的线性回归数据集评分标准如下:要点1:计算损失-------------------------------(20分)要点2:单变量线性回归梯度下降----------(20分)要点3:数据标准化-----------
目录1.回归模型1.1背景1.2损失函数2.相关代码2.1RidgeRegression类2.2求解代码2.3绘图代码3.直接调库使用 1.回归模型1.1背景对于回归问题来说,它们的基本内容基本上都是相同的,所以回归模型与线性回归模型类似:它们的差别主要体现在损失函数的构造上。对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为“病态矩阵”。有些时候不正确
转载 2024-05-10 17:12:48
166阅读
1、作用回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。2、输入输出描述输入:自变量 X 至少一项或以上的定量变量或二分类定类变量,因变量 Y 要求为定量变量(若为定类变量,请使用逻辑回归)。输出:模型检验优度的结果,自变量对
一、基本知识1、回归:从公式看,加入正则化项(2范数)。回归系数的计算公式为:问题引入:若给定数据集X,如果XTX的逆存在,可以使用常规的线性回归方法。但是,(1)数据样本数比特征数少的情况,矩阵的逆不能直接计算;(2)即使样本数多于特征数,若特征高度相关,XTX的逆依然无法计算。此时,可以考虑回归。另,回归是有偏估计回归方法,引入lamda来限制所有系数之和,通过引入该惩罚项(从需要最小化
文章目录2.9 正则化线性模型学习目标1 Ridge Regression (回归,又名 Tikhonov regularization)2 Lasso Regression(Lasso 回归)3 Elastic Net (弹性网络)4 Early Stopping [了解]5 小结 2.9 正则化线性模型学习目标知道正则化中回归的线性模型知道正则化中lasso回归的线性模型知道正则化中弹性
一、普通线性回归 1、原理 分类的目标变量是标称型数据,而回归将会对连续型的数据做出预测。应当怎样从一大堆数据里求出回归方程呢?假定输人数据存放在矩阵X中,而回归系数存放在向量W中。那么对于给定的数据X1, 预测结果将会通过Y=X*W给出。现在的问题是,手里有一些X和对应的Y,怎样才能找到W呢?一个常用的方法就是找出使误差最小的W。这里的误差是指预测Y值和真实Y值之间的差值,使用该误差的简单累
转载 2024-03-25 19:48:11
88阅读
  • 1
  • 2
  • 3
  • 4
  • 5