介绍CNN指的是卷积神经网络,这个介绍网上资料多的很,我就不介绍了,我这里主要是针对沐神教程的CNN代码做一个笔记。理解有不对的地方欢迎指出。卷积神经网络里面最重要也是最基本的概念就是卷积层、池化层、全连接层、卷积核、参数共享等。图: 这个图是对下面代码的一个描述,对于一张图片,首先处理成28*28(这里一张图片只有一个通道)。通过第一层卷积层,得到20个通道的输出(每个输出为24*24),所以第
转载
2024-04-08 10:30:34
79阅读
前言我用手机录制了一段视频,准备用exoplayer进行播放,当我准备将mp4文件放入工程时我发现文件太大了,这样app体积会很大,于是我找了个办法,把文件放到网上,但是我发现除了上传视频网站发布我好像没有其他办法(没玩过服务器),后来想到github不是可以放文件吗,研究了一下。下载工具并调出命令行去官网FFmpeg下载工具,获取包和可执行文件。因为我使用的windows,直接去发布版本里找到这
转载
2024-06-06 09:34:06
53阅读
目录0、首先注册一个账号1、创建知识库Repository2、创建一个分支branch——feature3、制作并提交commit4、打开拉取请求pull5、合并自己的pull请求github是一个用于版本控制和协作的代码托管平台。可以让所有人在任何地方协同工作。分支branch是一次在不同版本的存储库上工作的方式,创建仓库时默认有一个master分支。一般步骤:创建资源库repository创建
上一期,我们一起学习了深度学习中卷积神经网络的通俗原理,深度学习三人行(第8期)----卷积神经网络通俗原理接下来我们一起学习下关于CNN的代码实现,内存计算和池化层等相关知识,我们多多交流,共同进步。本期主要内容如下:CNN实现(TensorFlow)CNN之内存计算CNN之池化层小结公众号内回复关键字,即可下载代码,关键字见文末!一. CNN实现(TensorFlow)在TensorFlow中
转载
2024-08-08 11:08:38
144阅读
: // .com / adong7639 / p / 9145.
html
写的很好
'''
本文讲解的是在CNN中的batch normalization
'''
import torch
import torch.nn as nn
import copy
class Net(nn.Module):
def __init__(self, dim
转载
2024-03-27 10:01:48
156阅读
目录图像分类1 CIFAR-10数据集2 卷积神经网络(CNN)3 CNN结构的演化4 AlexNet网络5 Network-in-Network网络5.1 1x1卷积6 全局平均池化7 GoogLeNet7.1 Inception V1网络7.2 Inception V2网络7.3 Inception V3网络7.4 Inception V4网络8 总结一下Inception 图像分类判断图片
转载
2024-04-07 08:51:17
158阅读
操作系统: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue
Ubuntu 14.04.2 LTS \n \l Python版本: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ python --version
Python 2.7.6
转载
2024-03-29 14:28:36
91阅读
利用keras 实现cnn模型,关键在于: (1)原始数据的处理。(可输入的格式) (2)卷积层、池化层、全连接层的搭建 (3)各层对输入数据的size变化。1.库的导入 np_utils库中的功能,应该就是对label进行one-hot处理一类的操作。from models import Sequential 是keras搭建模型的一种框架,Sequential是一系列网络层按顺序构成的栈。 将
转载
2024-04-20 20:34:36
211阅读
基础的理论知识参考:https://www.zybuluo.com/hanbingtao/note/485480下面的代码也是基于上面文章的实现: 整个算法分为三个步骤:前向计算每个神经元的输出值aj
a
j
(j
转载
2024-04-19 22:23:03
91阅读
目录(?)[+]
MATLAB实现CNN一般会用到deepLearnToolbox-master。但是根据Git上面的说明,现在已经停止更新了,而且有很多功能也不太能够支持,具体的请大家自习看一看Git中的README。 deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码Auto
转载
2024-08-12 11:57:49
39阅读
文章目录0. 前言0.1 读本文前的必备知识1. LSTM架构2. LSTM正向传播代码实现2.1 隐藏层正向传播2.2 输出层正向传播3. LSTM反向传播代码实现3.1 输出层反向传播3.2 隐藏层反向传播4. 实例应用说明5. 运行结果6. 后记7. 完整代码 0. 前言按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错
转载
2024-08-09 00:08:18
240阅读
卷积神经网络(CNN)CNN解决了什么问题人类的视觉原理卷积神经网络-CNN 的基本原理卷积--局部特征提取池化层(下采样)——数据降维,避免过拟合全连接层——输出结果使用pytorch 实现卷积神经网络--(MNIST实战) 该博客仅用于记录学习过程,避免忘记方便以后复习卷积神经网络最擅长的就是进行图像处理问题,它受到人类视觉神经系统的启发。 CNN具有两大特点: 1、能够有效的将大数据量的图
转载
2023-12-02 23:51:19
104阅读
一,基本思路生成数据(验证码样本)1.验证码类型我们这里生成的验证码是当前最常见的验证码即由26位大小写英文字母和0到9十个数字组成的字符型验证码。2.生成方式我们可以选择两种方式来生成我们的训练数据。一种是一次性生成几万张图(保存到本地),另一种是定义一个数据生成器(数据未被保存)。两种方式各有千秋,第一种方式的好处是训练的时候显卡利用率高,如果你需要经常调参,可以一次生成,多次使用;第二种方式
转载
2024-05-17 09:57:08
51阅读
前言在我们训练神经网络时,通常使用的优化算法就是梯度下降,在这篇文章中,我以卷积神经网络为例,来具体展示一下在Pytorch中如何使用梯度下降算法来进行卷积神经网络的参数优化。1.网络搭建我们先来构建一个简单的卷积网络。import torch
import torch.nn as nn
import torch.optim as optim
class Conv_net(nn.Module):
转载
2023-11-03 09:46:52
150阅读
然后你要下载一个git工具网址:https://gitforwindows.org/进入官网直接下载就行,下载完成后进入github首页,点击新项目new repository(新建),如下图所示:然后进入如下页面,主要填写红色圈起来的几个部分,如下图:最后点击Create repository(创建仓库),生成如下页面:按红色圈圈画的步骤,先点击Clone or download, 然后复制第二
转载
2024-04-19 10:46:28
91阅读
摘要CNN卷积神经网络是图像识别和分类等领域常用的模型方法。由于CNN模型训练效果与实际测试之间存在较大的差距,为提高自由手写数字的识别率,尝试使用TensorFlow搭构CNN-LSTM网络模型,在完成MNIST数据集训练的基础上,基于python的flask框架实现对自由手写数字的识别,并展示线性回归模型、CNN模型及CNN-LSTM模型在手写数字上的识别结果。CNN-LSTM模型代码实现CN
转载
2024-02-24 22:57:12
353阅读
想自己动手写一个CNN很久了,论文和代码之间的差距有一个银河系那么大。在实现两层的CNN之前,首先实现了UFLDL中与CNN有关的作业。然后参考它的代码搭建了一个一层的CNN。最后实现了一个两层的CNN,码代码花了一天,调试花了5天,我也是醉了。这里记录一下通过代码对CNN加深的理解。首先,dataset是MNIST。这里层的概念是指convolution+pooling,有些地方会把convol
转载
2024-05-07 15:24:59
60阅读
注释Yang Jianwei 的Faster R-CNN代码(PyTorch)jwyang’s github: https://github.com/jwyang/faster-rcnn.pytorch文件demo.py 这个文件是自己下载好训练好的模型后可执行下面是对代码的详细注释(直接在代码上注释):1.有关导入的库 1 # -----------------------
转载
2024-06-24 10:56:37
45阅读
MNIST虽然很简单,但是值得我们学习的东西还是有很多的。项目虽然简单,但是个人建议还是将各个模块分开创建,特别是对于新人而言,模块化的创建会让读者更加清晰、易懂。CNN模块:卷积神经网络的组成;train模块:利用CNN模型 对 MNIST数据集 进行训练并保存模型test模块:加载训练好的模型对测试集数据进行测试cnn.pt : train 的CNN模型注意! 有GPU的小伙伴尽量使用GPU训
CNN与FCN区别1 CNN从图像级别的分类 FCN像素级别的分类2 CNN网络在卷积之后会接上若干个全连接层,映射成固定长度的特征向量 FCN将传统CNN中的全连接层转化成一个个的卷积层3 FCN可以接受任意尺寸的输入图像CNN: 通常cnn网络在卷积之后会接上若干个全连接层,将卷积层产生的特征图(featur
转载
2024-04-26 16:10:01
72阅读