简易车道线识别方法 文章目录简易车道线识别方法1.先上效果图1.1原图:1.2结果图2.源代码3.阈值脚本4.谈谈优缺点优点:缺点: 1.先上效果图1.1原图:1.2结果图2.源代码#1.canny边缘检测 2.mask 3.霍夫变换 4.离群值过滤 5.最小二乘拟合 6.绘制直线 import cv2 import numpy as np import matplotl
 这里的车道检测是基础版本,需要满足几个先决条件:(1)无人车保持在同车道的高速路中行驶(2)车道线清晰可见(3)无人车与同车道内前车保持足够远的距离。我们先要找一张图片,对其进行检测import matplotlib.image as mplimg import matplotlib.pyplot as plt img = mplimg.imread('lane.jpg') plt.i
转载 2023-11-05 07:57:04
342阅读
文章目录0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络4 YOLOV56 数据集处理7 模型训练8 最后 0 前言? 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不
Opencv-Python处理车道线检测1.导入我们先要找一张图片,对其进行检测.import cv2 import numpy as np from matplotlib import pyplot as plt from PIL import Image import math # 读入图像 img = cv2.imread('lu.jpg',3)2.Canny边缘检测为了突出车道线,我们对图
0 前言? 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是? 深度学习 机器视觉 车位识别车道线检测?学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分? 选题指导,
主要opencv函数介绍:CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, double theta, int threshold, double param1=0, double param2=0 );image输入 8-比特、单通道 (二值) 图像,当用CV_HOUGH_PROBABI
转载 2023-11-10 02:22:52
143阅读
我们基于图像的梯度和颜色特征,定位车道线的位置。在这里选用Sobel边缘提取算法,Sobel相比于Canny的优秀之处在于,它可以选择横向或纵向的边缘进行提取。从车道的拍摄图像可以看出,我们关心的正是车道线在横向上的边缘突变。OpenCV提供的cv2.Sobel()函数,将进行边缘提取后的图像做二进制图的转化,即提取到边缘的像素点显示为白色(值为1),未提取到边缘的像素点显示为黑色(值为0)。由于
目录1、前言2、霍夫线变换2.1、霍夫线变换是什么?2.2、在opencv中的基本用法2.2.1、HoughLinesP函数定义2.2.2、用法3、识别车道3.1、优化3.1.1、降噪3.1.2、过滤方向3.1.3、截选区域3.2、测试其它图片3.2.1、代码3.2.2、图片13.2.3、图片23.2.4、图片3 1、前言最近学习opencv学到了霍夫线变换,霍夫线变换是一个查找图像中直线的算法
手机也能使用车道导航了!10月30日,华为举行新一代旗舰新品HUAWEI Mate 40系列手机发布盛典,并在智能手机的导航应用中提供高精度定位能力。高德地图应用基于自身高精地图数据以及华为Location Kit的定位能力,将此前主要应用于自动驾驶车辆中的高精定位、高精地图技术,在智能手机上真正落地,也是业内首家通过智能手机为用户提供的车道导航服务。此外,HUAWEI P40系列、HUAWE
学习目标了解直方图确定车道线位置的思想我们根据前面检测出的车道线信息,利用直方图和滑动窗口的方法,精确定位车道线,并进行拟合。1. 定位思想下图是我们检测到的车道线结果:沿x轴方向统计每一列中白色像素点的个数,横坐标是图像的列数,纵坐标表示每列中白色点的数量,那么这幅图就是“直方图”,如下图所示:对比上述两图,可以发现直方图左半边最大值对应的列数,即为左车道线所在的位置,直方图右半边最大值对应的列
# Python 车道线识别入门指南 车道线识别是自动驾驶和计算机视觉领域中的一个重要任务。这篇文章将带你逐步了解如何使用Python实现车道线识别。我们将通过以下几个步骤完成这个任务: ### 步骤流程概述 | 步骤 | 描述 | | ---- | ------------------------ | | 1 | 安装必要的库
import cv2 import numpy as np import matplotlib.pyplot as plt #遍历文件夹 import glob from moviepy.editor import VideoFileClip """参数设置""" nx = 9 ny = 6 #获取棋盘格数据 file_paths = glob.glob("./camera_cal/calibr
本篇是自动驾驶系列的第二篇,在后台留言索取代码会提供源码链接。这次的目标是编写一个软件流水线来识别汽车前置摄像头的视频中的车道边界。摄像机标定图像,试验路图像和视频项目都可以在这里储存。这次试验的目标/步骤如下:计算相机校准矩阵和给定一组棋盘图像的失真系数。对原始图像应用畸变校正。使用颜色变换,渐变等创建阈值二值图像。应用透视变换来纠正二值图像(“鸟瞰”)。检测车道像素,找到车道边界。确定车道和车
计算机视觉—车道线检测一、 方案设计目标二、 技术要求三、 主要研究内容1. 检测过程2. 视频分解3. 分割图像4. 筛选轮廓、计算中心5. 拟合车道线近似曲线6. 在图像帧上绘制曲线并输出坐标数组四、 技术创新五、 方案优化展望 一、 方案设计目标使用计算机视觉方法和技术,识别、检测提供视觉数据中的车道线目标。二、 技术要求使用OpenCV、深度学习等方法(自选),识别提供视频中的车道线
转载 2024-02-11 21:17:26
58阅读
在自动驾驶和高级驾驶辅助系统(ADAS)中,车道线识别是一项至关重要的技术。它能够帮助车辆检测周围车道的边界,从而辅助实现安全驾驶。这篇博文将深入探讨如何在Python中实现车道线识别,展示技术细节与实战经验。 > 引用定义:车道线识别(Lane Detection)是一种计算机视觉技术,旨在识别道路上边缘的车道线,以便辅助车辆保持在车道中央,确保安全驾驶。 \[ \text{需求模型} :
原创 6月前
80阅读
在自动驾驶与智能车辆发展高速的今天,车道线检测技术已成为关键。这项技术旨在分析实时图像以确定车道边界,为车辆自动导航提供支持,从而提高行车安全和效率。 > “我需要一个能够实时检测和跟踪车道线Python程序,以便用于我的自动驾驶项目!” 面对这一初始技术痛点,我们意识到车道线的检测不仅仅需要精准的图像处理算法,还需要适应不同环境、天气和光线条件的能力。这就迫切需要一个全面且高效的解决方案。
最近在做一个基于opencv的无人小车,行车过程中遇到障碍时需要变道,由于实线不能变道,所以要判断车道线。但是找了很多地方却找不到关于车道线的实线虚线检测,于是通过自己的奇思妙想,想到了解决的办法,于是写下此博客,希望能帮到更多的人。入门版的车道线检测参考的资料 在此参考代码基础上完成的实线,虚线检测代码import cv2 as cv import numpy as np import util
转载 2023-10-09 08:49:59
170阅读
作者 | Ethon车道识别是自动驾驶领域的一个重要问题,今天介绍一个利用摄像头图像进行车道识别的实用算法。该算法利用了OpenCV库和Udacity自动驾驶汽车数据库的相关内容。该算法包含以下步骤:摄像头校准,以移除镜头畸变(Lens distortion)的影响图像前处理,用于识别车道线道路视角变换(Perspective transform)车道线检测车辆定位和车道半径计算01摄
车道线检测是计算机视觉领域的一个重要应用,常见的车道线检测算法包括以下几种:1、基于边缘检测的算法 该算法基于边缘检测原理,先对图像进行灰度化处理,然后使用Canny边缘检测算法提取边缘信息。最后,根据边缘信息来检测车道线的位置。该算法简单易懂,但对图像的噪声和光照变化比较敏感,需要对图像进行预处理。2、基于颜色特征的算法 该算法基于车道线的颜色特征,例如白色和黄色。该算法先将图像转换为HSV颜色
文章目录Canny 边缘检测小程序roi_mask理论实现霍夫变换基本原理API实现离群值过滤最小二乘拟合API实现直线绘制API视频流读写API实现 Canny 边缘检测import cv2 img = cv2.imread('img.jpg', cv2.IMREAD_GRAYSCALE) edge_img = cv2.Canny(img, 50, 100) cv2.imshow('ed
转载 2023-11-28 06:53:43
275阅读
  • 1
  • 2
  • 3
  • 4
  • 5