【1. 概要】论文针对的是时序预测问题(Time series forecasting,TSF),根据时间序列的特点创新性地提出了一个多层的神经网络框架sample convolution and interaction network(SCINet)用于时序预测。模型在多个数据集上都展示了其准确率上的优越性,且时间成本相对其他模型(如时序卷积网络TCN)也更低。本篇论文工作包含以下几点:说明了T
多元时间序列预测时间模式注意题目:Temporal Pattern Attention for Multivariate Time Series Forecasting作者:Shun-Yao Shih, Fan-Keng Sun, Hung-yi Lee来源:Machine Learning (cs.LG)Submitted on 12 Sep 2018 (v1), last revised 2
论文标题: Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 论文链接: https://arxiv.org/abs/2012.07436 源码链接: https://github.com/zhouhaoyi/ETDataset摘要许多实际应用都需要对长序列时间序列进行预测,例如电力消
论文链接:http://xxx.itp.ac.cn/pdf/2106.13008.pdfAbstract 延长预测时间是极端天气预警和长期能源消耗规划等实际应用的关键需求。本文研究时间序列的长期预测问题。先前的基于 Transformer 的模型采用各种 self-attention 机制来发现长期依赖关系。然而,长期未来的复杂时间模式使基于 Transformer 的模型无法找到可靠的
 一、本文介绍在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大
一种历史资料延伸预测,也称历史引伸预测法。是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收
KNN应用1、KNN简介1.1 KNN算法优缺点2、KNN算法的思想3、最佳K值的选择4、相似度的度量方法4.1 距离定义4.2 欧式距离4.3 曼哈顿距离4.4 余弦相似度4.5 杰卡德相似系数5、K-近邻的分类决策规则6、KNN算法从零实现(基于Python)6.1 伪代码6.2 Python代码实现7、近邻样本的搜寻方法7.1 KD搜寻树7.1.1 KD树的构建7.1.2 KD树的搜寻8、
转载 2024-05-08 21:42:48
312阅读
摘要 CNN分类常用于计算机视觉和语言识别,但是很少用于时间序列分类。因为设计了一个有两层卷积层的CNN用于作时间序列分类。CNN的一个缺点就是需要大量的有效数据去训练。针对这个缺点提出了两个解决方案:(1)数据扩充 (2)利用来自不同数据集的训练时间序列以半监督的方式学习网络Introduction 文献中关于时间序列分类的方法主要有两种:(1)distance-based【基于距离】【在原始数
        循环神经网络(RNN)跟前面介绍的卷积神经网络区别很大,卷积神经网络主要是处理空间信息,每层提取不同的特征,而RNN是处理时序信息的,时序信息就是说将一段文字或者声音等看作是一段离散的时间序列,按照时间进行输出的一种模型,本节主要介绍如何处理自然语言(Natural Language Processin
在家浑浑噩噩了几个月这样很颓。最近,用了三天认真的分析了一篇AAAI的会议论文和具体实现情况,这篇论文发表在今年的会议接受,作者来自于中山大学,浙江大学和西交利物浦,论文题目叫Towards Better Forecasting by Fusing Near and Distant Future Visions(强烈推荐国产镜像,基本秒开),代码,代码基于pytorch框架编写。
基础的时间序列预测任务的目标是给定历史序列预测未来每个时间点的具体值。这种问题定义虽然简单直接,但是也面临着一些问题。在很多应用场景中,我们不仅希望能预测出未来的具体值,更希望能预测出未来取值不确定性,例如一个概率分布或者取值范围。在很多应用场景中,未来的时间序列本身就具有很强的不确定性,如果能预测出一个取值区间,会对业务决策带来更大的帮助,让我们对未来的最好情况和最差情况心里有个数。对时间序列
本文约3000字,建议阅读12分钟。本文将通过拆解Prophet的原理及代码实例来讲解如何运用Prophet进行时间序列预测。简介对于任何业务而言,基于时间进行分析都是至关重要的。库存量应该保持在多少?你希望商店的客流量是多少?多少人会乘坐飞机旅游?类似这样待解决的问题都是重要的时间序列问题。这就是时间序列预测被看作数据科学家必备技能的原因。从预测天气到预测产品的销售情况,时间序列是数据科学体系的
原理模型如下图所示 Zi,t 表示 序列i 在 第t个时间点 的数据 Zi,t0就是要预测数据的开始区间 预测的数据集合定义为 [ Zi : t0: T] LSTM输入Xi,1:T表示再整个预测期间内都知道的协变量,就是输入的原始数据。上图 左右都是LSTM结构, 左右用的数据不一样,一个用的是训练数据,一个用的是预测数据deepar 本质就是lstm+softplus。要求数据具有相同的频率、分
时序卷积网络(Temporal convolutional network, TCN)的提出是为了是卷积神经网络具备时序特性,与多种RNN结构相对比,发现在多种任务上TCN都能达到甚至超过RNN模型。 TCN主要基于因果卷积和膨胀卷积(Dilated Convolution)因果卷积 从直观上来说,它类似于将卷积运算「劈」去一半,令其只能对过去时间步的输入进行运算。对于 TCN 所使用的一维卷积
数据集首先介绍一下我们的数据集,可以在我的github下载 该数据集是一个污染数据集,我们需要用该多维时间序列预测pollution这个维度构建训练数据首先我们删去数据中date,wnd_dir维(注:为了演示方便故不使用wnd_dir,其实可以通过代码将其转换为数字序列)data = pd.read_csv("./pollution.csv") data = data.drop(['date'
现有一个时间序列international-airline-passengers.csv,怎么使用RNN来预测呢?本文就对其进行详细的阐述。本时间序列一共144行,数据量很小,但是用其来学习RNN的使用已经足够了。使用RNN预测时间序列的整体思路是:取时间序列的第二列(international-airline-passengers.csv的第一列数据为时间,未在本次程序中使用),由于第二列值差异
前言在许多重要的领域,需要基于时间序列进行预测,例如:预测销售量,呼叫中心的通话量,太阳能活动,海潮,股市行为等等。假设酒店经理想预测明年会有多少游客,来以此调整酒店的库存,合理地猜测酒店的收入。根据过去某年/月/日的数据,他可以使用时间序列预测,得到访问者的大致值。游客的预测值将有助于酒店管理资源,并据此规划计划。在本文中,我们将学习多种预测技术,并通过在数据集上对它们进行比较。我们
时间序列预测损失函数时间序列预测是指通过分析历史数据来预测未来数据的变化趋势。时间序列预测在许多领域都有着广泛的应用,例如金融、气象、交通等。为了能够准确预测未来数据,时间序列预测中损失函数的选择非常关键。损失函数的选择直接影响模型的预测精度,因此,对时间序列预测中常用的损失函数进行综述和评价具有重要的意义。在时间序列预测中,常用的损失函数包括均方误差(Mean Squared Error, MS
转载 2023-10-25 17:34:26
294阅读
## 实现PyTorch CNN时间序列预测模型教程 ### 整体流程 以下是实现PyTorch CNN时间序列预测模型的整体流程: ```mermaid erDiagram 数据准备 --> 数据预处理 数据预处理 --> 构建模型 构建模型 --> 模型训练 模型训练 --> 模型评估 ``` ### 数据准备 首先,我们需要准备时间序列数据作为模型的输入
原创 2024-05-17 03:21:15
233阅读
本文为比利时布鲁塞尔自由大学(作者:Souhaib Ben Taieb)的博士论文,共201页。接下来的24小时要用多少电?接下来三天的温度是多少?未来几个月某一产品的销售量是多少?回答这些问题通常需要根据给定的历史观测序列(称为时间序列预测若干未来观测值。历史上,时间序列预测主要用于研究计量经济学和统计学。在过去的二十年里,机器学习作为一个研究自动从数据中学习的算法领域,已经成为预测建模研究中
  • 1
  • 2
  • 3
  • 4
  • 5