## 实现PyTorch CNN时间序列预测模型教程
### 整体流程
以下是实现PyTorch CNN时间序列预测模型的整体流程:
```mermaid
erDiagram
数据准备 --> 数据预处理
数据预处理 --> 构建模型
构建模型 --> 模型训练
模型训练 --> 模型评估
```
### 数据准备
首先,我们需要准备时间序列数据作为模型的输入
原创
2024-05-17 03:21:15
233阅读
在家浑浑噩噩了几个月这样很颓。最近,用了三天认真的分析了一篇AAAI的会议论文和具体实现情况,这篇论文发表在今年的会议接受,作者来自于中山大学,浙江大学和西交利物浦,论文题目叫Towards Better Forecasting by Fusing Near and Distant Future Visions(强烈推荐国产镜像,基本秒开),代码,代码基于pytorch框架编写。
转载
2023-10-27 20:38:38
152阅读
本文约3000字,建议阅读12分钟。本文将通过拆解Prophet的原理及代码实例来讲解如何运用Prophet进行时间序列预测。简介对于任何业务而言,基于时间进行分析都是至关重要的。库存量应该保持在多少?你希望商店的客流量是多少?多少人会乘坐飞机旅游?类似这样待解决的问题都是重要的时间序列问题。这就是时间序列预测被看作数据科学家必备技能的原因。从预测天气到预测产品的销售情况,时间序列是数据科学体系的
转载
2023-09-18 21:27:14
203阅读
Pytorch深度学习(七):卷积神经网络(CNN)(基础篇)参考B站课程:《PyTorch深度学习实践》完结合集传送门:《PyTorch深度学习实践》完结合集
卷积神经网络是一种带有卷积结构的深度神经网络,卷积结构可以减少深层网络占用的内存量,有效的减少了网络的参数个数,缓解了模型的过拟合问题。一、卷积层(Convolutional Layer)通道(Channel) 正如日常的图片的色彩是由R
转载
2023-10-08 16:38:52
757阅读
前言在许多重要的领域,需要基于时间序列进行预测,例如:预测销售量,呼叫中心的通话量,太阳能活动,海潮,股市行为等等。假设酒店经理想预测明年会有多少游客,来以此调整酒店的库存,合理地猜测酒店的收入。根据过去某年/月/日的数据,他可以使用时间序列预测,得到访问者的大致值。游客的预测值将有助于酒店管理资源,并据此规划计划。在本文中,我们将学习多种预测技术,并通过在数据集上对它们进行比较。我们
转载
2024-07-25 13:02:11
50阅读
这篇文章将使用 Kaggle 的 Montréal 自行车道数据集(数据集下载地址:https://www.kaggle.com/pablomonleon/montreal-bike-lanes)来演示 PyTorch 线性回归模型,并用它来回答以下两个问题:1. 同一天使用不同自行车道的骑车人数之间是否有关系?2. 根据另一条路上有多少人,你能预测出一条路上会有多少人吗?检查数据# Downlo
# 使用 PyTorch 实现 CNN 时间序列模型的指南
在机器学习和深度学习领域,时间序列分析是一个重要的任务。卷积神经网络(CNN)在处理序列数据方面表现卓越,尤其是在图像和一维时序数据上。本文将详细介绍如何在 PyTorch 中实现一个基于 CNN 的时间序列模型,我们将分解整个流程并展示每一步的代码实现。
## 实现流程概览
在开始之前,我们需要清楚整个实现 CNN 时间序列模型的
【时间序列预测/分类】 全系列60篇由浅入深的博文汇总:传送门
卷积神经网络模型(CNN)可以应用于时间序列预测。有许多类型的CNN模型可用于每种特定类型的时间序列预测问题。在本介绍了在以TF2.1为后端的Keras中如何开发用于时间序列预测的不同的CNN模型。这些模型是在比较小的人为构造的时间序列问题上演示的,模型配置也是任意的,并没有进行调参优化,这些内容会在以后的文章中介绍。先看一下思维导图
转载
2023-10-11 18:34:45
264阅读
【1. 概要】论文针对的是时序预测问题(Time series forecasting,TSF),根据时间序列的特点创新性地提出了一个多层的神经网络框架sample convolution and interaction network(SCINet)用于时序预测。模型在多个数据集上都展示了其准确率上的优越性,且时间成本相对其他模型(如时序卷积网络TCN)也更低。本篇论文工作包含以下几点:说明了T
转载
2024-05-08 21:58:26
118阅读
文章信息本周阅读的论文是题目为《Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting》的一篇2021年发表在AAAI会议上涉及时间序列预测问题的文章。摘要在很多实际问题应用中,需要对长时时间序列问题进行预测,例如用电消耗规划。长时时间序列预测(LSTF)要求模型具有较强的预测能力,即能够有效
转载
2024-05-08 23:11:49
180阅读
多元时间序列预测的时间模式注意题目:Temporal Pattern Attention for Multivariate Time Series Forecasting作者:Shun-Yao Shih, Fan-Keng Sun, Hung-yi Lee来源:Machine Learning (cs.LG)Submitted on 12 Sep 2018 (v1), last revised 2
转载
2024-04-08 10:37:53
160阅读
更新时间记录:2023.6.19 更新内容:代码优化本人接触时间序列预测有两三个月了(期间有忙其他事情),从学python,再到学pytorch,pandas等数据处理方面的知识,深感知识海洋的广阔!本人学的不是很系统,一方面原因可能就是知识付费(并不是说知识付费不好,只是付费内容太多、花冤枉钱),另一方面就是本人的知识体系没有搭建好。我在GitHub上面并没有找到好的源码分享(pytorch框架
# LSTM时间序列预测模型在PyTorch中的应用
时间序列预测是许多领域中的关键任务,包括经济学、气象学和工程学等。在这些领域中,利用过去的数据来预测未来的趋势至关重要。长短期记忆网络(LSTM)由于其独特的结构,能够有效捕捉数据中的长短期依赖关系,因此特别适合于时间序列预测。本文将介绍如何使用PyTorch构建LSTM时间序列预测模型,并给出相应的代码示例。
## LSTM的基本概念
原创
2024-10-16 05:28:42
130阅读
论文标题: Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 论文链接: https://arxiv.org/abs/2012.07436 源码链接: https://github.com/zhouhaoyi/ETDataset摘要许多实际应用都需要对长序列时间序列进行预测,例如电力消
转载
2024-02-26 08:40:04
79阅读
论文链接:http://xxx.itp.ac.cn/pdf/2106.13008.pdfAbstract 延长预测时间是极端天气预警和长期能源消耗规划等实际应用的关键需求。本文研究时间序列的长期预测问题。先前的基于 Transformer 的模型采用各种 self-attention 机制来发现长期依赖关系。然而,长期未来的复杂时间模式使基于 Transformer 的模型无法找到可靠的
转载
2024-05-10 10:14:27
104阅读
一、本文介绍在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大
怎样才算正确检测到一个目标?什么是IOU:mAP计算方法: 假设针对某一类别的AP情况 TP:预测正确的边界框个数。预测边界框与GT-box的IOU>0.5 FP:假阳性 ( FN就是 把检测对象检测为背景的 那些检测框 的数量,也就是一些被检测错误(F)为负样本(N)的样本,它们本来应该被检测为正样本。 ) FN:漏检 ↑只检测出了一个目标: TP=1 FP=0 Precisinotall
转载
2023-12-16 13:27:21
89阅读
一种历史资料延伸预测,也称历史引伸预测法。是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收
转载
2024-04-09 00:50:17
96阅读
KNN应用1、KNN简介1.1 KNN算法优缺点2、KNN算法的思想3、最佳K值的选择4、相似度的度量方法4.1 距离定义4.2 欧式距离4.3 曼哈顿距离4.4 余弦相似度4.5 杰卡德相似系数5、K-近邻的分类决策规则6、KNN算法从零实现(基于Python)6.1 伪代码6.2 Python代码实现7、近邻样本的搜寻方法7.1 KD搜寻树7.1.1 KD树的构建7.1.2 KD树的搜寻8、
转载
2024-05-08 21:42:48
312阅读
使用深度学习进行时间序列预测:一项调查已经开发了许多深度学习架构来适应跨不同领域的时间序列数据集的多样性。在本文中,我们调查了单步和多水平时间序列预测中使用的常见编码器和解码器设计——描述了每个模型如何将时间信息纳入预测。接下来,我们重点介绍混合深度学习模型的最新发展,该模型将经过充分研究的统计模型与神经网络组件相结合,以改进任一类别的纯方法。最后,我们概述了深度学习还可以通过时间序列数据促进决策
转载
2023-10-18 23:47:35
278阅读