//将三位二进制数转为一位十进制数
#include<iostream>
#include<cmath>
using namespace std;
#define innode 3 //输入结点数
#define hidenode 10//隐含结点数
#define outnode 1 //输出结点数
#define trainsample 8//BP训练样本
转载
2024-04-08 09:24:51
39阅读
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能。由这些人工神经元构建出来的网络,才能够具有学习、联想、记忆和模式识别的能力。BP网络就是一种简单的人工神经网络。我们的第二话就从BP神经网络开始漫谈吧。BP的来源“时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代。同样的道理,在讲BP网络
转载
2024-05-22 20:57:35
21阅读
目录:深度学习中常见的几种激活函数一、前言二、ReLU函数三、sigmoid函数四、tanh函数 一、前言激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活, 它们将输入信号转换为输出的可微运算。 大多数激活函数都是非线性的。 由于激活函数是深度学习的基础,下面简要介绍一些常见的激活函数。二、ReLU函数最受欢迎的激活函数是修正线性单元(Rect
转载
2024-02-13 22:49:53
69阅读
一、前言嵌入式开发中我们要时刻保持代码的高效与整洁。目前LoRaWAN规范有两个版本V1.0.2和V1.0.3,相应的SDK也有两个:LoRaMac-node v4.0.0和LoRaMac-node v4.4.2。LoRaMac-node v4.4.2增加了classB的通信方式,但是LoRaMac-node v4.4.2的内存占用要比v4.0.0大一些,不过目前市面上买的LoRAWAN模组应该还
1、如何有效阅读caffe源码 1、caffe源码阅读路线最好是从src/cafffe/proto/caffe.proto开始,了解基本数据结构内存对象和磁盘文件的一一映射关系,中间过程都由ProtoBuffer工具自动完成。 2、看include/目录中.hpp头文件,通过头文件类申明理解整个框架。从基类向派生类,掌握这
转载
2024-08-30 16:59:26
98阅读
BP算法: 1.是一种有监督学习算法,常被用来训练多层感知机。 2.要求每个人工神经元(即节点)所使用的激励函数必须可微。 (激励函数:单个神经元的输入与输出之间的函数关系叫做激励函数。) (假如不使用激励函数,神经网络中的每层都只是做简单的线性变换,多层输入叠加后也还是线性变换。因为线性模型的表达能力不够,激励函数可以引入非线性因素) 下面两幅图分别为:无激励函数的神经
转载
2023-11-29 13:17:19
156阅读
前言bp神经网络是模拟人体中神经元结构而设计出来的: 神经元大致可以分为树突、突触、细胞体和轴突。树突为神经元的输入通道,其功能是将其它神经元的动作电位传递至细胞体。其它神经元的动作电位借由位于树突分支上的多个突触传递至树突上。神经细胞可以视为有两种状态的机器,激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。当信号量超过某个阈值时
转载
2023-09-15 19:40:05
85阅读
非线性激活在神经网络的搭建中很重要,我们可以简单的理解为非线性变化的目的就是为神经网络中引入非线性特征,这样才能训练出符合各种特征,各种曲线的模型。文章目录二、非线性激活函数ReLU和Sigmoid的使用1.ReLU函数1.1 ReLU函数的官方文档1.2 实例练习2.Sigmoid函数2.1Sigmoid函数的官方文档2.2 实例练习 一、激活函数是什么激活函数是指在多层神经网络中,上
转载
2024-04-07 08:03:28
109阅读
BP算法一、代码二、使用步骤1.引入库2.定义函数3.采样点的获取4.初始化权重和偏置5.开始训练6.把数据拿出来并且作图改进 一、代码作业要求用matlab实现,这不难为我了,干脆用python实现。写的挺早,发出来纪念下二、使用步骤1.引入库代码如下(示例):import numpy as np
import matplotlib.pyplot as plt
import math
%mat
转载
2023-07-04 11:47:03
36阅读
这是目录一、BPR 的介绍二、近年来在 BPR 上的经典改进算法1、WBPR2、GBPR3、SBPR4、AoBPR5、MBPR三、实验比较BPR算法以及它的改进算法1、使用数据集 Filmtrust 进行实验2、使用数据集 Epinions 进行实验 一、BPR 的介绍BPR,UAI,2009,来自 Rendle 的论文 BPR: Bayesian Personalized Ranking fr
转载
2024-03-21 09:04:00
149阅读
1. 神经元模型以下引用自Poll的笔记:神经网络基础。 神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神经元有两种状态:兴奋和抑制。一般情况下,大多数的神经元是处于抑制状态,但是一旦某个神经元收到刺激,导致它的电位超过一个阈值,那么这个神经元就会被激活,处于“兴奋”状态,进而向其他的神经元传播化学物质
转载
2024-05-11 21:14:59
64阅读
激活函数:在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数(又称激励函数) 激活函数的本质:激活函数是来向神经网络中引入非线性因素的,通过激活函数,神经网络就可以拟合各种曲线。举一个例子来说明:假如我的任务是,将下面的这幅图中的三角形和圆形分开,也就是一个典型的二分类问题: 我们用肉眼能很轻松的得出结论:无法用一条直线将这
转载
2024-03-18 10:00:23
156阅读
(4)Leaky ReLUReLU是将所有的负值设置为0,造成神经元节点死亡的情况。相反,Leaky ReLU是给所有负值赋予一个非零的斜率。优点:(1)神经元不会出现死亡的情况。(2)对于所有的输入,不管是大于等于0还是小于0,神经元不会饱和(3)由于Leaky ReLU线性、非饱和的形式,在SGD中能够快速收敛。(4)计算速度要快很多。Leaky ReLU函数只有线性关系,不需要指数计算,不管
转载
2024-03-18 17:44:02
1027阅读
?1 概述在大数据、人工智能的背景下,神经网络算法被广泛的应用和普及,风险预测问题成为人们关注的热点,BP神经网络算法是用于解决预测问题效果最好的算法之一,但传统的BP神经网络算法在隐含层权值选择过程具有一定的局限性,会影响算法预测的效率和精度。针对这种情况,提出了改进的BP神经网络算法,利用遗传算法和BP神经网络算法相结合,提升算法的预测效率和预测精度。首先,分析传统BP神经网络算法流程及不足;
转载
2023-08-28 17:53:56
92阅读
对于训练神经网络来说,为了增强网络表征数据的能力,一般需要引入非线性激活函数,一般有sigmoid tanh relu,今天我们就来分布说明一些这些激活函数的特点。 总而言之层数越深relu的优势越明显。(故一般而言sigmoid和tanh多用在bp神经网络中,在深度学习的网络框架中多用relu激活函数)那么为什么在深度学习框架中引入Relu激活函数呢?当前,深度学习一个明确的目标是从数
转载
2023-10-26 20:03:07
68阅读
前言论文地址: https://arxiv.org/pdf/1505.00853.pdf.论文贡献:这篇论文并没有提出什么新的激活函数,而是对现有的非常火的几个非饱和激活函数作了一个系统性的介绍以及对他们的性能进行了对比。最后发现,在较小的数据集中(大数据集未必),Leaky ReLU及其变体(PReLU、RReLU)的性能都要优于ReLU激活函数;而RReLU由于具有良好的训练随机性,可以很好的
转载
2024-04-25 14:05:54
0阅读
其实一直在做论文阅读心得方面的工作,只是一直没有分享出来,这篇文章可以说是这个前沿论文解读系列的第一篇文章,希望能坚持下来。简介论文提出了动态线性修正单元(Dynamic Relu,下文简称 DY-ReLU),它能够依据输入动态调整对应分段函数,与 ReLU 及其静态变种相比,仅仅需要增加一些可以忽略不计的参数就可以带来大幅的性能提升,它可以无缝嵌入已有的主流模型中,在轻量级模型(如 Mobile
正则表达式正则表达式为高级的文本模式匹配,抽取,与/或文本形式的搜索和替换功能提供了基础。正则表达式是一些由字符和特殊符号组成的字符串,它们描述了模式的重复或者表述多个字符。转义符\在正则表达式中,有很多有特殊意义的是元字符,比如\n和\s等,如果要在正则中匹配正常的"\n"而不是"换行符"就需要对""进行转义,变成’\’。在python中,无论是正则表达式,还是待匹配的内容,都是以字符串的形式出
经典激活函数代码实现与函数经典激活函数reLUsoftplustanhsigmoidsoftmax代码实现图像绘制结果 经典激活函数relu、softplus、tanh、sigmoid、softmaxreLU线性整流函数(Rectified Linear Unit, ReLU) 而在神经网络中,Relu作为神经元的激活函数,定义了该神经元在线性变换之后的非线性输出结果。换言之,对于进入神经元的来
转载
2024-06-04 05:35:37
75阅读
导语在深度神经网络中,通常使用一种叫**修正线性单元(Rectified linear unit,ReLU)**作为神经元的激活函数。ReLU起源于神经科学的研究:2001年,Dayan、Abott从生物学角度模拟出了脑神经元接受信号更精确的激活模型,如下图:其中横轴是时间(ms),纵轴是神经元的放电速率(Firing Rate)。同年,Attwell等神经科学家通过研究大脑的能量消耗过程,推测神
转载
2023-12-16 20:51:25
184阅读