几个基本概念bit二进制位, 是计算机内部数据储存的最小单位,11010100是一个8位二进制数。一个二进制位只可以表示0和1两种状态(21);两个二进制位可以表示00、01、10、11四种(22)状态;三位二进制数可表示八种状态(2^3)……Byte字节,是计算机中数据处理的基本单位,计算机中以字节为单位存储和解释信息,规定一个字节由八个二进制位构成,即1个字节等于8个比特(1Byte=8bit
BERT Pytorch版本 源码解析(一) 一、BERT安装方式pip install pytorch-pretrained-bert二、BertPreTrainModel: 一个用于获取预训练好权重的抽象类,一个用于下载和载入预训练模型的简单接口1、初始化函数(def __init__(self, config, *inputs, **kwargs)):def __init
转载
2023-07-04 18:26:09
221阅读
前段时间实现了transformer,用李沐老师的话来讲其实bert可以简单理解为缩水版的transformer,transformer有encoder和decoder,bert去掉了decoder,改为用N个encoder堆叠在一起,拿最后一个encoder的输出直接做预训练任务。老规矩,先把大体框架列出来,然后根据框架一个一个去实现。目录架构 数据预处理NSPMLM:BERTEmbe
转载
2023-12-25 10:40:12
92阅读
在机器学习和自然语言处理领域,BERT(Bidirectional Encoder Representations from Transformers)模型的出现引起了广泛关注。但随着其在不同环境中的应用,特别是Python版本的实现,很多开发者开始面临相关的版本兼容问题。本文将详细探讨“BERT模型Python版本”的相关问题,并分享解决过程。
> BERT模型是一种基于Transformer
这一章我们来聊聊在中文领域都有哪些预训练模型的改良方案。Bert-WWM,MacBert,ChineseBert主要从3个方向在预训练中补充中文文本的信息:词粒度信息,中文笔画信息,拼音信息。与其说是推荐帖,可能更多需要客观看待以下'中文'改良的在实际应用中的效果~
这一章我们来聊聊在中文领域都有哪些预训练模型的改良方案。Bert-WWM,MacBert,C
转载
2024-04-25 06:34:47
128阅读
Bert 给人们带来了大惊喜,不过转眼过去大约半年时间了,这半年来,陆续出现了与 Bert 相关的不少新工作。最近几个月,在主业做推荐算法之外的时间,我其实一直比较好奇下面两个问题:问题一:Bert 原始的论文证明了:在 GLUE 这种综合的 NLP 数据集合下,Bert 预训练对几乎所有类型的 NLP 任务(生成模型除外)都有明显促进作用。但是,毕竟 GLUE 的各种任务有一定比例的数据集合规模
在这篇博文中,我将分享如何解决“PyTorch版本BERT代码”的问题,并将整个过程分为多个部分,以便于理解和应用。以下是我的整理内容,包括环境配置、编译过程、参数调优、定制开发、生态集成和进阶指南。
我们首先需要配置环境。以下是我整理的思维导图,以便更直观地理解整个配置过程。
```mermaid
mindmap
root((环境配置))
A(系统环境)
A1(操作系
# BERT的PyTorch版本:一种强大的自然语言处理工具
近年来,深度学习技术在自然语言处理(NLP)领域取得了显著的进步,其中BERT(Bidirectional Encoder Representations from Transformers)模型无疑是一颗璀璨的明珠。BERT的成功在于其能够理解上下文信息,并在多种NLP任务中展示出卓越的性能。本文将介绍如何在PyTorch中使用BE
单文本分类任务:对于文本分类任务,BERT模型在文本前插入一个[CLS]符号,并将该符号对应的输出向量作为整篇文本的语义表示,用于文本分类,如下图所示。可以理解为:与文本中已有的其它字/词相比,这个无明显语义信息的符号会更“公平”地融合文本中各个字/词的语义信息。语句对分类任务:该任务的实际应用场景包括:问答(判断一个问题与一个答案是否匹配)、语句匹配(两句话是否表达同一个
转载
2024-07-04 22:41:49
851阅读
动手学深度学习笔记一、BERT1.BERT:把两个结合起来2.BERT的输入表示3.编码器4.预训练任务掩蔽语言模型下一句预测5.整合代码二、用于预训练BERT的数据集1.下载并读取数据集2.生成下一句预测任务的数据3.生成遮蔽语言模型任务的数据4.将文本转换为预训练数据集三、预训练BERT1.预训练2.用BERT表示文本 一、BERT在word2vec和GloVe中,每个词都是由一个固定的预训
转载
2024-06-27 17:35:59
71阅读
什么是闭包?大多数人对它的印象就是函数中嵌套函数吧。本篇就来详细的介绍闭包及其作用。首先要从初中所学的一个直线方程y = kx + b讲起了…… 对于给定的k,b,y 会随着x的改变而改变,那如何用编程实现呢? 学会函数的你一开始是这样写的:def line(k, b, x):
return k * x + b
line(1, 2, x=1)
line(1, 2, x=2)
line(1
转载
2023-11-24 09:40:57
67阅读
在自然语言处理领域,BERT模型因其强大的上下文理解能力而被广泛应用于序列标注任务,如命名实体识别(NER)、词性标注等。然而,随着PyTorch版本的不断更新,如何高效地实现基于BERT的序列标注任务,成为了开发者们面临的一个挑战。下面就来具体探讨一下这个过程。
### 背景定位
在使用PyTorch实现BERT序列标注的过程中,我们并不是一开始就能够顺利地运行我们的模型。最初在执行简单的测试
代码学习的是前一篇博客中pytorch的代码的BertForTokenClassification模型,run的是ner例子:https://github.com/huggingface/transformers/blob/master/examples/run_ner.py。1、模型概览:使用的模型是:multi_cased_L-12_H-768_A-12.zip,https://github.
机器翻译及相关技术Task2中的循环神经网络部分,有实现预测歌词的功能。在那个任务中,训练数据的输入输出长度是固定的,而在机器翻译中,输出的长度是不固定的,所以不能直接用RNN来处理这种任务。Encoder-Decoder框架是常用于机器翻译,对话系统这类场景的框架。 需要注意的是,在训练过程中Decoder的输入是真实的label,而预测时,输入是上一个ceil的预测值机器翻译解码 通常用bea
转载
2023-08-31 19:57:49
153阅读
参考代码:https://github.com/649453932/Bert-Chinese-Text-Classification-Pytorch从名字可以看出来这个是做一个中文文本分类的的任务,具体就是做新闻文本分类的任务,具体有以下几个类,属于多分类的问题目录一、如何让你下载的代码跑起来二、bert模型的使用模型代码学习-CLS文本分类-Bert-Chinese-Text-Classific
基于Tensorrt 实现Bert的推理加速,记录一下流程和踩得坑1.Tensorrt的安装Tensorrt安装时要对应版本,我的版本:tensorrt官网下载链接: nVidia. 安装时按照下面的两个教程按照即可:1. 2.2.pth转onnx文件https://zhuanlan.zhihu.com/p/446477075 此文章中八1.内容写的非常详细。 需要注意的是,要看自己有几个输入,几
BERT-Pytorch 源码阅读[TOC]1. 整体描述BERT-Pytorch 在分发包时,主要设置了两大功能:bert-vocab :统计词频,token2idx, idx2token 等信息。对应 bert_pytorch.dataset.vocab 中的 build 函数。bert:对应 bert_pytorch.__main__ 下的 train 函数。为了能够调试,我重新建立了两个文
转载
2023-07-04 21:53:52
225阅读
Bert(预训练模型)动机基于微调的NLP模型预训练的模型抽取了足够多的信息新的任务只需要增加一个简单的输出层注:bert相当于只有编码器的transformer基于transformer的改进每个样本是一个句子对加入额外的片段嵌入位置编码可学习< cls >为分类 < sep >用来分隔句子 有两个句子前一个id为0后一个id为1BERT选择Transformer编码器作
转载
2023-09-09 06:40:18
164阅读
准备数据集这里我并没有用什么大型的数据集,而是手动输入了两个人的对话,主要是为了降低代码阅读难度,我希望读者能更关注模型实现的部分'''
code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
Reference : https://github.com/jadore801120/attention-is-all-you-
转载
2023-10-19 17:11:14
206阅读
torch.save doc 主要用的就前两个参数obj:要保存的python 对象f:open出来的io文件,或者是只是保存文件路径,文件名的str(后者应该就是把这个str 以"w"方式open出来了)注意obj这个对象必须要能够serialization(如果是你自己自定义的obj,要实现serialization).一般而言,想要自己定义的obf能够序列化,可以实现to_dict,to_j
转载
2023-09-03 17:05:37
204阅读