PyTorch入门实战教程笔记(五):基础张量操作2包括:索引与切片和 维度变换索引和切片:使用函数torch.rand()来创建一个数据,比如a = torch.rand(4,3,28,28),即为Batch size为4(即4张图片)的28×28的RGB图像,这也是CNN中最常用的,那么a[0]指的就是索引的第一张图片,a[0,1]指的是第一张图片第一个通道(如:R)的数据,示例如下图:   
       目录1.拼接torch.cat() torch.stack()2.切分:torch.chunk() torch.split()3.索引torch.index_select() torch.masked_select() torch.ge(),gt(),le(),lt() 4.变换:torch.reshape() torch.trans
(1-1)pytorch张量数据的索引与切片操作1、对于张量数据的索引操作主要有以下几种方式:a=torch.rand(4,3,28,28):DIM=4的张量数据a(1)a[:2]:取第一个维度的前2个维度数据(不包括2);(2)a[:2,:1,:,:]:取第一个维度的前两个数据,取第2个维度的前1个数据,后两个维度全都取到;(3)a[:2,1:,:,:]:取第一个维度的前两个数据,取第2个维度的
陈天奇:内存张量结构DLPack的PythonAPI来了新智元2021-02-28 14:25:22【新智元导读】DLPack是一种开放的内存张量结构,用于在框架之间共享张量,近日,开发者陈天奇更新社交媒体详细介绍了为DLPack添加PythonAPI、语义和实现细节的内容。大家知道DLPack吗:深度学习从业人员或多或少都会有了解,诸如 Tensorflow、PyTorch 等深度学习框架,确实
最近项目当中要用python来实现一些功能,于是就抓紧时间学习了一下python,顺便将学习过程当中的一些知识点记录下来,方便随时查阅:1、我们先用 print 语句完成程序员们老生常谈第一个编程实例,Hello World!>>> print 'Hello World!' Hello World!2、函数 abs()接受一个数值输入,然后输出这个数值的绝对值:>>&
张量切片的方式和numpy 一样,如下out1=outs[:,:100]out2=outs[:,100:]下面是代码demoimport keras.backend as Kfrom tensorflow.keras.layers import concatenatefrom tensorflow.keras import Sequential,Modelfrom tensorflow.kera
原创 2023-01-13 05:54:13
197阅读
说明和top slice的操作,并用 MATLAB 代码实现这些操作。
原创 11月前
174阅读
一、切片的定义和使用package main import "fmt" func main() { //数组定义 var 数组名 [元素个数] 数据类型 //切片定义 var 切片名 [] 数据类型 var s [] int fmt.Println(s) }输出结果[]可以看到,我们在上面的程序中,将切片的定义和数组的定义做了对比,切片的定义时,不需要任何元素个数当定义完成切片后,我
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载 2023-09-14 22:03:42
157阅读
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定 x = torch.empty(5, 3) print(x
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载 2023-09-27 22:27:49
298阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载 2023-08-21 09:16:40
162阅读
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维)           &nbs
转载 2023-07-28 19:31:33
205阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。    在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载 2024-01-23 17:02:49
358阅读
1.张量的创建方法通过torch.tensor()方法创建张量,可通过多种形式创建,如下:(1)通过列表创建t = torch.tensor([1, 2])(2)通过元组创建t = torch.tensor((1, 2))(3)通过numpy数组创建import numpy as np a = np.array((1, 2)) # a是一个numpy多维数组 t = torch.tenso
PyTorch框架学习三——张量操作一、拼接1.torch.cat()2.torch.stack()二、切分1.torch.chunk()2.torch.split()三、索引1.torch.index_select()2.torch.masked_select()四、变换1.torch.reshape()2.torch.transpace()3.torch.t()4.torch.squeeze
转载 2024-06-24 21:00:13
110阅读
2. pytorch 张量操作基本数据类型创建 tensor索引与切片tensor 维度变换 基本数据类型pytorch 数据类型对比PyTorch 是面向数值计算的 GPU 加速库,没有内建对 str 类型的支持。one-hot [0,1,0,0,···]Embedding(常用的编码语言[NLP]) word2vecglovePyTorch 内建的数据类型PyTorch 基本数据类
Tensors 张量  类似于NumPy的ndarrays,可以使用GPU进行计算。概念:张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡儿积上的多重线性映射,其坐标是|n|维空间内,有|n|个分量的一种量, 其中每个分量都是坐标的函数, 而在坐标变换时,这些分量也依照某些规则作线性变换。(1)r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。(2)在同构的意义下,第零阶
转载 2024-02-23 14:27:29
22阅读
  • 1
  • 2
  • 3
  • 4
  • 5