目录1、图像边缘提取原理2、边缘提取算子介绍3、图像的亚像素边缘提取4、亚像素轮廓的特征分析5、xld的分割及直线拟合6、圆及椭圆的拟合7、中心线的提取1、图像边缘提取原理网上搜索图像边缘提取,有很多详细的讲解,就是讲的都太深奥,很难看明白。图像边缘提取原理并不复杂,至于一些大牛提供的复杂变换公式,也没必要深入的去研究,halcon都已经在算子中将其封装好了,我们会用就行。边缘的定义:边缘是图像中
转载
2024-05-31 00:36:05
161阅读
# 如何在 Python 中实现 Sobel 边缘提取
在计算机视觉中,边缘检测是图像处理的重要一步,而 Sobel 算子是一种常用的边缘检测技术。对于刚入行的开发者来说,理解如何实现这一过程可能会有些困难。在本文中,我们将逐步引导你如何使用Python实现Sobel边缘提取。
## 流程概述
实现Sobel边缘提取的基本流程如下:
| 步骤 | 描述 |
|------|------|
经典的边缘提取算法中有一类算法是基于设计边缘提取算子(或者也可以叫卷积模板),然后经过阈值处理得到二值化的边缘图,下面就具体介绍这种思路相关的内容。边缘提取(一):传统的边缘提取算子(1)传统的边缘提取算子包括sobel、prewit、robert、LoG等,下面一一介绍:1. &nbs
转载
2023-11-03 13:04:09
142阅读
Sobel算子是应用广泛的离散微分算子之一,用于图像处理中的边缘检测,计算图像灰度的近似梯度。基于图像卷积来实现在水平方向和垂直方向检测对应方向上的边缘。对于源图像与奇数Sobel水平核Gx、垂直核Gy进行卷积可计算水平与垂直变换。Sobel算子在进行边缘检测时候效率较高,对精度要求不是很高时候,是一种较为常用的边缘检测方法。Sobel算子对沿着x轴和y轴的排列表示得很好,但是对于其他角度的表示却
转载
2024-01-22 21:30:14
148阅读
目录【1】算法简介【2】算子参数介绍【3】完整代码【1】算法简介 Sobel算子是一种用于边缘检测的线性滤波器,如果把图像看做是一个二维函数,那么Sobel算子就是图像在垂直和水平方向上变化的速度(即梯度)。Sobel算子在水平和垂直方向上做像素值的差分,能够得到图像梯度的近似值,在像素周围进行运算时,能
import cv2import numpy as npimg = cv2.imread('../data/ren.png', 0)sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0) # 获取水平方向边缘梯度,第二个参数表示获取所有边缘信息不要遗漏sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1) # 获取垂直方向...
原创
2022-09-23 11:01:09
507阅读
在计算机视觉中,边缘提取是图像处理的一个重要步骤,它可以帮助我们分析图像的结构信息。Sobel算子是常用的边缘检测工具之一,通过计算图像亮度的梯度,可以有效地找出边缘。本文将深入探讨如何在Python中利用Sobel算子进行边缘提取,包括版本对比、迁移指南、兼容性处理、实战案例、排错指南和性能优化等方面。
### 版本对比
在不同版本的OpenCV中,Sobel算子的特性有显著差异。以下是各个
1. 创建轮廓 一般获取轮廓的步骤是提取边缘,边缘是一张图片中亮暗区域的过渡位置,它可以由图片梯度计算得出。图片梯度也可以表示为边缘幅度和边缘方向。通过选择那些有高的边缘幅值的像素点或者有特定边缘方向的像素点,区域内的轮廓可以提取出来。可以通过多种的方式以多种精度提取轮廓。像素精度提取边缘的方法 :使用 边缘滤波器 &
转载
2023-09-07 23:43:20
311阅读
Canny边缘检测算法 经典的Canny边缘检测算法通常都是从高斯模糊开始,到基于双阈值实现边缘连接结束。但是在实际工程应用中,考虑到输入图像都是彩色图像,最终边缘连接之后的图像要二值化输出显示,所以完整的Canny边缘检测算法实现步骤如下:1. 彩色图像转换为灰度图像2.  
转载
2023-08-08 13:17:27
389阅读
1、Roberts算子2、Prewitt算子3、Sobel算子4、Laplacian算子5、Scharr算子6、Canny算子步骤1.步骤2.步骤3.1)2)步骤4.步骤5.7、LOG算子 1、Roberts算子在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取。该函数主要是利用内核实现对图像的卷积运算。dst = filte
转载
2023-08-20 13:32:37
813阅读
前情提要:作为刚入门机器视觉的小伙伴,第一节课学到机器视觉语法时觉得很难理解,很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!!一、opencv+python环境搭建其实能写python的就能写opencv,但是工具很总要,代码提示也很重要,你可能会用submit vs等工具,submit编码个
转载
2023-10-03 08:31:00
221阅读
Sobel算子 原型 Sobel算子依然是一种过滤器,只是其是带有方向的。在OpenCV-Python中,使用Sobel的算子的函数原型如下:dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) 函数返回其处理结果。 前四个是必须的参数:第一个参数是需要处理的图像;第二个参数是图像的
转载
2023-12-15 14:51:08
142阅读
一、概论下面将学习opencv中边缘检测的各种算子和滤波器:包括canny算子,sobel算子,scharr算子。什么叫做边缘检测呢?边缘检测的目标是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反应了属性的重要事件和变化,包括:(1) 、深度上的不连续(2) 、表面方向的不连续(3) 、物质属性变化(4) 、场景照明变化边缘检测剔除了大量认为与图
1. 题目描述安装opencv环境,实现边缘提取2. 实现过程1、 安装opencv+python环境2、 打开图片3、 将图片二值化4、 提取边缘5、 显示图片3. 运行结果代码:运行结果: 4. 问题及解决方法问题:提取边缘时,背景为黑色,边缘为白色,与要求不符解决方法:用255减去原图灰度矩阵,就能得到颜色转置
转载
2023-06-06 09:55:52
413阅读
在理想情况下,对图像应用边缘检测器的结果可能会导致一组连接曲线,表明物体的边界,表面标记的边界以及对应于表面方向不连续点的曲线。因此,对图像应用边缘检测算法可以显著减少要处理的数据量,因此可以过滤掉可能被认为不太相关的信息,同时保留图像的重要结构属性。如果边缘检测步骤成功,则后续解释原始图像中的信息内容的任务可以大大简化。然而,从中等复杂程度的真实图像中获得这种理想边缘并不总是可能的。从非平凡图像
转载
2023-08-18 23:30:19
14阅读
OpenCV边缘检测Sobel算子自写Sobel算子边缘检测:Laplace算子自写Sobel算子边缘检测:Canny算子Hough变换检测直线 Sobel算子OpenCV调用:C++: void Sobel (
InputArray src,//输入图
OutputArray dst,//输出图
int ddepth,//输出图像的深度
int dx,
int dy,
int ksi
转载
2024-06-10 15:28:45
108阅读
最近在自学游戏开发里面的图形算法,需要提取某些图片的前景内容,替换掉原来的背景。如果是几张图用PS处理一下就行了,但图片量比较打,还是写一个程序比较好。为了解决这个问题,我接触了opencv这个库,突然觉得这玩意太牛逼了,不光可以处理图片,还内置很多人工智能算法,于是暂时放弃了游戏开发,转战计算机视觉。学了几天基础知识,刚开始觉得有好多种方法都可以提取图片的前景内容,但用得都不理想。原因有以下2个
转载
2024-02-19 17:14:20
95阅读
Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:
(1)最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;
转载
2023-05-18 19:47:46
334阅读
Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:(1)最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;(2)最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小;(3)检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应Canny边缘检测算法
转载
2023-06-16 20:01:46
243阅读
小白学python(opencv边缘检测)边缘检测算子类别Canny()Sobel()Scharr() 边缘检测就是将图像的边缘提取并检测出来,有以下几种方法: 边缘检测算子类别边缘检测算子:
一阶导数: Roberts、Sobel、Prewitt
二阶导数: Laplacian、Log/Marr、(Kirsch、Nevitia)
非微分边缘检测算子: Canny(又是数学方面,还是靠百度)
转载
2023-08-11 14:30:50
215阅读