上一节我们介绍了LeNet-5和AlexNet网络,本节我们将介绍VGG-Nets、Network-In-Network和深度残差网络(residual network)。VGG-Nets网络模型VGG-Nets 由英国牛津大学著名研究组 VGG(Visual Geometry Group)提出,是2014 年 ImageNet 竞赛定位任务 (localization task)第一名和分类任务
转载
2024-09-10 16:48:48
50阅读
本文是接着上一篇目录残差网络1 堆叠多层卷积 2 残差网络结构:用来解决深层网络训练难度过大的问题 ◼ 残差网络的实现 ◼ 残差模型实验结果 ◼ 残差模型与同等深度卷积的对比残差网络1 堆叠多层卷积理论上
,深层的网络效果不会比浅层网络差, 因为
转载
2024-04-18 13:43:59
323阅读
为什么要加深网络?深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可以靠加深网络的层次来丰富。 从而,在构建卷积网络时,网络的深度越高,可抽取的特征层次就越丰富。 所以一般我们会倾向于使用更深层次的网络结构,以便取得更高层次的特征。 但是在使用深层次的网络结构时我们会遇到两个问题,梯度消失,梯度爆炸问题和网络退化的问题。也就是我们需要不断加深网络,因为网络越深,那么特征的层次也就越高,那么
转载
2024-03-27 12:27:30
93阅读
残差结构Residual 初次接触残差结构是在ResNets的网络中,可以随着网络深度的增加,训练误差会越来越多(被称为网络退化)的问题,引入残差结构即使网络再深吗,训练的表现仍表现很好。它有助于解决梯度消失和梯度爆炸问题,让我们在训练更深网络的同时,又能保证良好的信息。 残差结构示意图
残差网络的设计思想 残差元的主要设计有两个,快捷连接和恒等映射,快捷连接使得残差变得可能,而恒等
转载
2023-12-14 12:07:31
124阅读
强烈建议直接跳转查看原文。转载时有很多图片都挂掉了。在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗模型容易过拟合梯度消失/梯度爆炸问题的产生问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过采集海量数据,并配合Drop
1. 残差块ResNet沿用了VGG完整的 3×3 卷积层设计。 残差块里首先有2个有相同输出通道数的 3×3 卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的 1×1 卷积层来将输入变换成需要
转载
2024-03-17 15:41:08
328阅读
前言一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力。凭着这一基本准则CNN分类网络自Alexnet的7层发展到了VGG的16乃至19层,后来更有了Googlenet的22层。可后来我们发现深度CNN网络达到一定深度后再一味地增加层数并不能带来进一步地分类性能提高,反而会招致网络收敛变得更慢,test dataset的分类准确率也变得更差。在2015年,由华人学者提出的Resne
转载
2024-03-21 09:22:29
223阅读
ResNet残差网络Pytorch实现——Bottleneck残差块上一篇:【课程1 - 第二周作
原创
2023-01-17 08:29:18
140阅读
Deep Residual Learning for Image RecognitionResNet是何凯明等人在2015年的论文《Deep Residual Learning for Image Recognition》提出的一种结构。其主要使用了残差块,来解决训练困难的问题以及模型退化问题。在2015年ImageNet检测、ImageNet定位、COCO检测和COCO分割任务的第一名。ResN
转载
2024-03-18 18:46:16
96阅读
ResNet残差网络Pytorch实现——BasicBlock残差块上一篇:【课程1 - 第二周作业】
原创
2023-01-17 08:29:38
280阅读
1、曲线拟合:又称为函数逼近,也是求近似函数的一类数值方法,它不要求近似函数在节点处与函数同值,即不要求近似曲线过已知点,只要求尽可能反映给定数据点的基本趋势。2、假设a_0,a_1已经确定,y_i* =a_1x+a_0是由近似函数得到的近似值,它与观测值y_i之差成为残差,残差的大小可以作为衡量近似函数好坏的标准。 常用的准则有以下三种: (1)使残差的绝对值之和最小,即∑|δ_i|=min;
转载
2023-12-21 11:48:28
237阅读
深度残差网络—ResNet总结写于:2019.03.15—大连理工大学论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人 论文地址:https://arxiv.org/pdf/1512.03
转载
2024-07-02 22:59:21
67阅读
论文阅读其实论文的思想在今天看来是不难的,不过在当时 ResNet 提出的时候可是横扫了各大分类任务,这个网络解决了随着网络的加深,分类的准确率不升反降的问题。通过一个名叫“残差”的网络结构(如下图所示),使作者可以只通过简单的网络深度堆叠便可达到提升准确率的目的。 残差结构 残差结构的处理过程分成两个部分,左边的 F(X) 与右边的 X,最后结果为两者相加。其中右边那根线不会对 X 做
转载
2024-04-17 14:22:26
96阅读
随着卷积神经网络的发展和普及,网络深度和架构研究早已经成为人们常见的问题,所以,现在卷积神经网络的趋势发展趋势就是:足够深、足够广。足够深就是网络层数足够深,足够广就意味着不能从传统尺度来解决问题,而应该是多尺度,也就是multi-scale。 但是随着网络的深入,一些经典的问题也就随之出现,例如梯度弥散和梯度爆炸。这两种问题都是由于神经网络的特殊结构和特殊求参数方法造成的,也就是链式求导的间接产
转载
2024-06-05 07:05:02
42阅读
网络退化问题AlexNet、VGG、GoogleNet结构都是通过加深网络结果,但是网络的深度提升不能通过层与层的简单堆叠来实现。由于梯度消失问题,深层网络很难训练。因为梯度反向传播到前面的层,重复相乘可能使梯度无穷小。结果就是,随着网络的层数更深,其性能趋于饱和,甚至开始迅速下降,ResNets 残差网络2015年何恺明推出的ResNet在ISLVRC和COCO上横扫所有选手,获得冠军。ResN
转载
2024-03-25 21:29:20
142阅读
引言深度残差网络(Deep residual network, ResNet)的提出是CNN图像史上的一件里程碑事件,让我们先看一下ResNet在ILSVRC和COCO 2015上的战绩:
ResNet取得了5项第一,并又一次刷新了CNN模型在ImageNet上的历史:
ResNet的作者何凯明也因此摘得CVPR2016最佳论文奖,当然何博士的成就远不止于此,感兴趣的可以去搜一下他
转载
2024-03-25 12:46:06
171阅读
Contents1 Intorduction2 残差块3 ResNet模型4 获取数据和训练模型 1 IntorductionResNet在2015年的ImageNet图像识别挑战赛夺魁。由于存在梯度消失和梯度爆炸问题,深度很深的神经网络是很难训练的。解决方法之一是人为地让神经网络某些层跳过下一层神经元的连接,隔层相连,弱化每层之间的强联系,即跳跃连接(skip connection)。用它可以
转载
2024-01-11 20:17:54
149阅读
BEST PAPER.论文链接 https://arxiv.org/pdf/1512.03385.pdf源代码 ImageNet models in Caffe: https://github.com/KaimingHe/deep-residual-networks 深度网络的层数按有权重W的conv层&全连接层来算,不包括池化和Relu层。在ResNet之前备受瞩
转载
2024-04-06 10:12:24
28阅读
残差网络是为了解决模型层数增加时出现梯度消失或梯度爆炸的问题而出现的。传统的神经网络中,尤其是图像处理方面,往往使用非常多的卷积层、池化层等,每一层都是从前一层提取特征,所以随着层数增加一般会出现退化等问题。残差网络采取跳跃连接的方法避免了深层神经网络带来的一系列问题。一:对模型原理与优点的理解(1)在传统的前馈网络中,网络中堆叠的层可以将输入x映射为F(x),这一整体网络的输出为H
转载
2023-10-14 17:28:37
175阅读
ResNet残差网络Pytorch实现上一篇:【课程1 - 第二周作业】 ✌✌✌✌ 【目录,include_top=True):
原创
2023-01-17 08:40:13
309阅读