上采样是指将图像上采样到更高分辨率的任何技术。最简单的方法是使用重新采样和插值。即取原始图像输入,将其重新缩放到所需的大小,然后使用插值方法(如双线性插值)计算每个点处的像素值。在CNN上下文中,上池化通常指代最大池化的逆过程。在CNN中,最大池化操作是不可逆的,但是我们可以通过使用一组转换变量记录每个池化区域内最大值的位置来获得一个近似的逆操作结果。在反卷积(网络)中,上池化操作使用这些转换变量
转载
2024-10-21 13:29:16
62阅读
图像处理大型科普—上下采样哪里来的“上采样”和“下采样”? 采样做为专业术语,最早被用于通信的信号处理中,在某度百科中定义如下: ”所谓采样就是采集模拟信号的样本。 采样是将时间上、幅值上都连续的信号,在采样脉冲的作用下,转换成时间、幅值上离散的信号。所以采样又称为波形的离散化过程。” 是的,当我完整的读了一遍以后,似乎懂了那么一点点,大概是在说,从自然界的模拟信号中,有规律的抽取一些标志性的
卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。 刘昕博士总结了CNN的演化历史,如下图所示: CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模
转载
2024-10-15 09:48:56
93阅读
上采样/下采样
上采样/下采样 样本不均衡时解决方式在实际应用中经常出现样本类别不均衡的情况,此时可以采用上采样或者下采样方法上采样upsampling上采样就是以数据量多的一方的样本数量为标准,把样本数量较少的类的样本数量生成和样本数量多的一方相同,称为上采样。下采样subsampled下采样,对于一个不均衡的数据,让目标值(如0和1分类)中
转载
2023-09-13 09:48:12
438阅读
1、Upsampling(上采样)在FCN、U-net等网络结构中,涉及到了上采样。上采样概念:上采样指的是任何可以让图像变成更高分辨率的技术。最简单的方式是重采样和插值:将输入图片进行rescale到一个想要的尺寸,而且计算每个点的像素点,使用如双线性插值等插值方法对其余点进行插值来完成上采样过程。 上采样
2、上池化Unpooling是在CNN中常用的来表示max poolin
转载
2024-08-08 11:23:48
63阅读
背景介绍在常见的卷积神经网络中,采样几乎无处不在,以前是max_pooling,现在是strided卷积。以vgg网络为例,里面使用到了相当多的max_pooling输入侧在左面(下面是有padding的,上面是无padding的),可以看到网络中用到了很多2x2的pooling同样,在做语义分割或者目标检测的时候,我们用到了相当多的上采样,或者转置卷积典型的fcn结构,注意红色区分的decovo
转载
2024-08-08 12:11:36
72阅读
图像处理——上采样和下采样 2016年11月22日 15:34:55
Miss_yuki
阅读数:5824
最近看一篇图像去雾的论文,看到算法中使用了图像的下采样和上采样,就去了解了一下。上下采样的评判标准为看重(chong)采样时的采样频率与第一次采样将连续信号变为离散信号时的采样频率相比的大小,若小于第一次的采样频率则为下采样,
转载
2024-10-12 20:07:53
126阅读
上采样和下采样什么是上采样和下采样?• 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有 两个:1、使得图像符合显示区域的大小;2、生成对应图像的缩略图。 • 放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的 是放大原图像,从而可以显示在更高分辨率的显示设备上。注意: 如果想放大一个图片或者一个图片,应
上采样/下采样缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1、使得图像符合显示区域的大小;2、生成对应图像的缩略图。
放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。对图像的缩放操作并不能带来更多关于该图像的信息, 因此图像的质量将不可避免地
转载
2023-11-09 14:23:52
456阅读
作者 | skura 采样问题是数据科学中的常见问题,对此,WalmartLabs 的数据科学家 Rahul Agarwal 分享了数据科学家需要了解的 5 种采样方法,AI 开发者将文章编译整理如下。 数据科学实际上是就是研究算法。 我每天都在努力学习许多算法,所以我想列出一些最常见和最常用的算法。 本文介绍了
前言本文译自quora上对《What is the difference between Deconvolution, Upsampling, Unpooling, and Convolutional Sparse Coding?》的回答。个人觉得这位老哥的回答很简洁干练。所以转到这里。Upsampling(上采样)在FCN、U-net等网络结构中,我们见识到了上采样这个东西。那么,什么是上采样呢
转载
2024-03-22 14:06:35
59阅读
简介 缩小图像(或称为 下采样 (subsampled)或 降采样 (downsampled))的主要目的有两个: 1. 使得图像符合显示区域的大小; 2. 生成对应图像的缩略图。 放大图像(或称为 上采样 (upsampling)或 图像插值 (interpolating))的主要目的是放大原图像
原创
2021-08-27 10:06:15
1914阅读
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1、使得图像符合显示区域的大小;2、生成对应图像的缩略图。 放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显
转载
2017-11-13 19:46:00
431阅读
2评论
一、欠采样与过采样过采样和欠采样是针对一组图像数据集来说的,而上采样和下采样是对与单张图片来说的。欠采样(undersampling):当数据不平衡的时,比如样本标签1有10000个数据,样本标签0有6000个数据时,为了保持样本数目的平衡,可以选择减少标签1的数据量,这个过程就叫做欠采样。过采样(oversampling):减少数据量固然可以达到以上效果,并且在一定程度上防止过拟合,但...
原创
2021-07-29 11:47:23
7287阅读
降采样:2048HZ对信号来说是过采样了,事实上只要信号不混叠就好(满足尼奎斯特采样定理),所以可 以对过采样的信号作抽取,即是所谓的“降采样”。 在现场中采样往往受具体条件的限止,或者不存在300HZ的采样率,或调试非常困难等等。若 R>>1,则Rfs/2就远大于音频信号的最高频率fm,这使得量化噪声大部分分布在音频频带之外的高频区域 ,而分布
转载
2022-09-27 11:13:33
3158阅读
最远点采样是三维点云分割中常用到的下采样方法,通过下采样更少点获取邻域点云块的更高维特征,丰富点云的特征提取。原理:设待处理点云块共有N个点,需从中采样M个点先随机选定该待处理点云块中的一个点作为初始点i;然后计算待处理点云中剩余N-1个点到该初始点i的距离,选择距离最远的那个点作为第二个点j,此时采样点云块M={i,j};再计算待处理点云中剩余N-2个点到采样点云块M={i,j}的距离,比较N-
转载
2023-08-11 17:18:39
129阅读
近期在看一些Segmentation的文章,很多用到了encoder-decoder的结构,encoder基本都是各类的CNN很熟悉了,decoder涉及到上采样或者反卷积的各种方法,这里直接做一个总结。 网上很多的总结都是按照方法总结,但总感觉缺点儿上下文,因此本文以论文为梳理对象,总结一下不同论文里用到的上采样方法。 当然,论文的梳理不只包括Segmentation的文章,后面遇到涉及到上采样
转载
2024-10-16 14:39:06
66阅读
论文地址:Understanding Convolution for Semantic Segmentation摘要在上采样中提出dense upsampling convolution (DUC)来产生双线性上采样中缺少的更详细的信息。在编码阶段提出hybrid dilated convolution (HDC) framework,可以有效地扩大了网络的接收域(RF)以聚合全局信息,也减轻了由
转载
2024-06-19 05:43:38
150阅读
2020本就是个平凡而不平静的年份,中国经济进入新常态,工业也步入4.0时代。工业4.0时代,又叫大数据时代、智能化时代,简单说就是通过通讯技术、虚拟网络和实体物理网络相结合,实现制造业的智能化转变。这是一个泛概念,也就是说几乎所有的产业都有可能在工业4.0时代升级。 机器视觉技术是目前工业生产检测、医疗检测等领域为实现自动化、
首先,谈谈不平衡数据集。不平衡数据集指的是训练数据中不同类别的样本数量差别较大的情况。在这种情况下,模型容易出现偏差,导致模型对数量较少的类别预测效果不佳。为了解决这个问题,可以使用上采样和下采样等方法来调整数据集的平衡性,除此之外也有一些数据增强的方法。上采样(Oversampling)和下采样(Undersampling)都是数据预处理技术,用于处理不平衡数据集的问题。上采样:增加数量较少的类
转载
2023-09-03 13:12:23
264阅读