VLOOKUP函数使用之三,多条件查找该函数的语法规则如下:VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)参数简单说明输入数据类型lookup_value要查找的值数值、引用或文本字符串table_array要查找的区域数据表区域col_index_num返回数据在查找区域的第几列数正整数range_lookup精确匹配/近
近期发了几篇VLOOKUP函数的教程,今天继续来讲VLOOKUP函数的内容,因为它是学习EXCEL中必须要掌握一个函数,也是被称之后职场神器的函数。今天带给大家的是VLOOKUP函数的多条件查找。我们在应用VLOOKUP函数时,时不时会碰到多条件查找,在学习VLOOKUP函数的基础用法时,学的单一条件查找,那多条件查找如何操作呢?我们来讲两个多条件查找的事例。一、一维表的多条件查找如下图,我们要查
Excel小技巧,使用函数(INDEX+MATCH)快速进行条件查询目录Excel小技巧,使用函数(INDEX+MATCH)快速进行条件查询1、例如:快速查找下图右边同学的总分 2、在条件查询区域,总分单元格中输入函数【=INDEX(E:E,MATCH(H2,A:A,0))】即可 3、INDEX(E:E 函数为查找结果所在列,MATCH(H2,A:A,0)函数中H2
通过索引与切片操作可以提取张量的部分数据,使用频率非常高。 文章目录一、索引二、切片 一、索引TensorFlow 中,支持基本的[?][?] …标准索引方式,也支持通过逗号分隔索引号的索 引方式。 考虑输入X 为4 张32x32 大小的彩色图片(为了方便演示,大部分张量都使用随 即分布模拟产生,后文同),shape 为[4,32,32,3],首先创建张量:x = tf.random.normal
Tensor基础1. TensorTensor又叫做张量,实际上标量、向量和矩阵都是张量。只是标量是0维张量,向量是一维张量,矩阵是二维张量,除此以外,张量还可以向更高维度扩展,四维五维等等。张量的创建方法首先需要导入torch的包,使用**torch.Tensor( )**函数创建,传入的参数(2,4)是构造一个2*4的矩阵import torch
x = torch.Tensor(2,4)使用
张量tensor 进行 形状shape1. tensor是什么?张量这一概念的核心在于,它是一个数据容器。张量的维度(秩):Rank/Order: Rank为0、1、2时分别称为标量、向量和矩阵,Rank为3时是3阶张量,Rank大于3时是N阶张量。这些标量、向量、矩阵和张量里每一个元素被称为tensor
NumPy基础知识(四)数据类型数组创建使用NumPy进行I / O索引编制分配与参考单元素索引其他索引选项索引数组索引多维数组布尔或“掩码”索引数组将索引数组与切片组合结构索引工具将值分配给索引数组处理程序中可变数量的索引广播字节交换结构化数组编写自定义数组容器
子数组ndarray数组索引是指使用方括号([])来索引数组值。索引有很多选择,它们赋予numpy索引强大的功能,但是随着功能的加入,
目录1、数据类型2、维度变换view/reshapeSqueese/unsqueezeExpand/repeatpermute3、Broadcast什么时候用broadcast4、拼接和拆分catstacksplitchunk5、数学运算基本运算(四则)矩阵相乘 matmulpower近似值clamp6、统计属性norm 范数mean,sum,min,max,proddim,keepdimTop
## pytorch tensor 索引的实现流程
流程图如下所示:
```mermaid
flowchart TD
A(创建一个pytorch tensor)
B(获取tensor的形状和维度)
C(使用索引获取tensor中的元素)
D(使用切片获取tensor中的子集)
E(使用布尔索引获取满足条件的元素)
```
### 步骤一:创建一个pyt
原创
2023-10-18 12:12:46
123阅读
矩阵矩阵就是一个矩形的数字、符号或表达式数组。矩阵中每一项叫做矩阵的元素(Element)。下面是一个2×3矩阵的例子: 矩阵可以通过(i, j)进行索引,i是行,j是列,这就是上面的矩阵叫做2×3矩阵的原因
# 深入理解 PyTorch Tensor 索引
在使用 PyTorch 进行深度学习时,我们需要频繁地进行数据处理,其中一个关键概念就是“张量索引”。在这篇文章中,我们将介绍 PyTorch 张量的索引,包括基本的索引方式、切片、布尔索引以及高级索引方法,并通过示例代码来帮助大家掌握这些技术。
## 什么是张量?
张量是一个多维数组,可以用来存储数值数据。在深度学习中,张量是我们处理数据的
1.数字int。 数字主要是用于计算用的。2.字符串str 字符串的索引与切片 索引即下标,就是字符串组成的元素从第一个开始,初始索引为0以此类推s=('abcdefg')
print(s[0]) # a
print(s[1]) # b 切片即通过索引(索引开始:索引结束:步长)截取字符串的一段,形
张量(Tensors) 和 操作(operations)TensorFlow.js是一个在JavaScript中使用张量来定义并运行计算的框架。张量是向量和矩阵向更高维度的推广。张量(Tensors)tf.Tensor是TensorFlow.js中的最重要的数据单元,它是一个形状为一维或多维数组组成的数值的集合。tf.Tensor和多维数组其实非常的相似。一个tf.Tensor还包含如
Tensor的创建、修改、索引操作Tensor概述创建Tensor修改Tensor形状这里说明两个问题torch.view与torch.reshape的异同unsqueeze函数的参数索引操作参考文献 Tensor概述对Tensor的操作很多,从接口角度来划分,可以分为两类: (1)torch.function;(2)tensor.function 这些操作对大部分Tensor都是等价的,如:t
Tensor基本操作Tensor基础2.1.0创建Tensor2.1.1生成特定tensor2.1.2改变形状2.1.3 索引操作2.1.4广播机制2.1.5逐元素操作2.1.6归并操作2.1.7比较操作2.1.8矩阵操作2.2Pytorch与Numpy比较2.3Tensor与Autograd2.4计算图2.4.1标量反向传播2.4.2非标量反向传播2.5使用Numpy实现机器学习2.6使用Te
torch.tensor索引机制首先明白tensor的dima = torch.tensor([[[1,2,3], [2,3,4]],
[[5,6,7], [8,9,10]]])
a.shape
>>> torch.Size([2, 2, 3])a.shape所对应的第一个值即为dim=0维度上有两个torch.tensor([2,3])同理,在dim=1维度上有两个
# PyTorch中的Tensor索引
## 引言
PyTorch是一个广泛应用于机器学习和深度学习的开源框架。在PyTorch中,Tensor是其核心数据结构之一,可以看作是多维数组。在实际应用中,我们经常需要对Tensor进行索引操作,以获取其中的特定元素或子集。本篇文章将介绍如何在PyTorch中进行Tensor索引操作。
## 索引的步骤
为了更好地理解整个索引的流程,我们可以用表
原创
2023-09-15 23:37:38
152阅读
# PyTorch中获取Tensor索引的方法
在PyTorch中,我们经常需要获取tensor中的某个元素或者某个范围的元素。这时候,我们就需要使用PyTorch提供的方法来获取tensor的索引。本文将介绍几种获取tensor索引的方法,并附上相应的代码示例。
## 1. 通过索引获取单个元素
我们可以通过索引来获取tensor中的单个元素,这时候需要使用`tensor[index]`的
目录1)索引优劣势2)MySQL索引分类数据结构角度从物理存储角度从逻辑角度3)MySQL索引结构B-TreeB+TreeMyISAM主键索引与辅助索引的结构InnoDB主键索引与辅助索引的结构主键索引:辅助(非主键)索引:Hash索引full-text全文索引R-Tree空间索引哪些情况需要创建索引哪些情况不要创建索引覆盖索引最左前缀原则索引下推MYSQL官方对索引的定义为:索引(Index)是
Tensor 支持与 numpy.ndarray 类似的索引操作,如无特殊说明,索引出来的结果与源 tensor 共享内存,即修改一个,另外一个也会跟着改变。In [65]: a = t.arange(0,6).reshape(2,3)
转载
2023-10-17 09:38:28
339阅读