ROC曲线:       横轴:假阳性率 代表将负例错分为正例的概率       纵轴:真阳性率 代表能将正例分对的概率  AUC是ROC曲线下面区域得面积。 与召回率对比:AUC意义:   &nbs
由于ROC曲线面积比较难求得,所以判断模型好坏一般使用AUC曲线 关于AUC曲线的绘制,西瓜书上写得比较学术,不太能理解,假设有这么一个样本集:假设预测样本为20个,预测为正类的概率已经进行了排序,得分递减,画图步骤为:(1) 在所排序的样本最左边,画一条线即  无 | 1 2 3 4 5 …,线左边的认为是正类,右边认为是负类,可以算出,TP(实际为正,预测为正)=0,FN(
转载 2023-07-19 20:42:58
198阅读
ROC曲线绘制及AUC计算ROC曲线可以直观的反映分类性能,而AUC则可定量的对分类器进行测评。今天我们以简洁的方式说明ROC曲线的绘制及AUC的计算方法。方法一 按定义进行计算步骤: 1.1给定一个常量N,把区间[0,1]均等地分成N分,依次取k=0,1/N,2/N,…N-1/N,1作为阈值,对测试数据进行分类。 1.2 对于每一个给定的阈值,计算: a. TP 、FP、TN、FN实例的个
一.AUC的定义及绘制方法AUC(Area Under the Curve of ROC)被定义为ROC曲线下与坐标轴围成的面积。AUC的取值范围在[0.5,1],越接近1则表示模型的精度越好。ROC(Receiver Operating Characteristic Curve)全称为受试者工作特征曲线,以假阳性率(False Positive Rate, FPR)为横坐标,以真阳性率(True
AUC计算  1. 根据定义Aera Under Curve,计算面积。样本有限,所以得到的AUC曲线一般是个阶梯状,所以计算这些阶梯的面积即可。先按score排个序,然后从头遍历一遍,把每个score作为划分阈值,可以得到对应的TPR和FPR,计算出底下的面积。更直观的计算方法,参考《百面机器学习》:这种直接计算面积的方法比较麻烦,一般使用下面的等价方法进行计算。2. AUC
AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积,如下图: 要理解这张图的含义,得先理解下面这个表: 表中列代表预测分类,行代表实际分类: 实际1,预测1:真正类(tp) 实际1,预测0:假负类(fn) 实际0,预测1:假正类(fp) 实际0,预测0:真负类(tn) 真实负样本总数=n=fp+tn 真实正样本总数=p=tp+fn
转载 2023-08-30 09:22:42
183阅读
使用sklearn的一系列方法后可以很方便的绘制处ROC曲线,这里简单实现以下。主要是利用混淆矩阵中的知识作为绘制的数据:    tpr(Ture Positive Rate):真阳率                           
## PythonAUC曲线的流程 首先,我们需要明确一下AUC曲线的目的和意义。AUC(Area Under Curve)是一种常用的评价模型分类准确性的指标,通常用于评估机器学习模型的性能。AUC曲线可以直观地展示模型的分类效果,通过计算曲线下的面积来评估模型的准确性。 下面是实现“PythonAUC曲线”的步骤: | 步骤 | 代码 | 说明 | | ---- | ---- |
原创 2023-08-16 08:23:56
481阅读
 AUC介绍AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC ,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算
转载 2023-07-19 20:44:26
108阅读
前言ROC(Receiver Operating Characteristic)曲线AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUCAUC介绍AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大
转载 2023-09-26 17:21:49
69阅读
目录一:前言?ROC曲线?AUC?数据集:car.data二:绘制ROC曲线1. 二值化处理(one-hot编码)2. 计算fpr,tpr ,auc3. 绘制曲线图demo4. 结果三:全部Demo 一:前言?ROC曲线ROC曲线(receiver operating characteristic curve),是反映灵敏性和特效性连续变量的综合指标;是用构图法揭示敏感性和特异性的相互关系;它通
转载 2023-09-24 10:41:17
1070阅读
目录前言ROC的计算方法方法1: ROC曲线下的面积方法2: 正样本得分大于负样本得分的概率方法3: 改进方法2的计算附:sklearn.metrics.roc_auc_score计算aucAUC的spark实现(有空补上)总结 前言AUC(Area Under Curve),指的是ROC曲线(下图黄色的线)下的面积,ROC相关知识参见西瓜书。 基于上述ROC曲线引申出AUC另外一个定义:正样本
# Python绘制AUC曲线 在机器学习与统计学中,AUC(Area Under the Curve)是一种常用的评估模型性能的指标,尤其在二分类任务中。AUC代表ROC(Receiver Operating Characteristic)曲线下的面积,能够直观地反映模型的分类能力。本文将为您介绍如何使用Python绘制AUC曲线,并提供详细的代码示例。 ## 什么是AUCAUC表示模
原创 17天前
8阅读
第一步保存日志文件,用重定向即可: $TOOLS/caffe train --solver=$SOLVERFILE 2>&1 |tee out.log 第二步直接绘制: python plot_training_log.py 2 testloss.png out.log 这个plot_training_log.py在这个目录下caffe-fast-rcnn/tools/ext
之前各位的回答从各个角度解释了AUC的意义和计算方法,但是由于本人实在愚钝,一直没能参透AUC的意义
转载 2023-05-18 17:17:49
80阅读
前提: 前向传播经过若干个神经元,再经过激活函数,最终得到结果,然后输出损失函数,根据损失函数再进行反向传播,及传递梯度,调整权重。 并不是根据激活偶函数输出直接返回梯度值,而是在计算损失函数的基础上进行反向传播梯度。更多的是按照小批量的处理,累计梯度求平均值,最后进行梯度下降。损失函数与分类函数svm和折叶损失:举例:用一个例子演示公式是如何计算的。假设有3个分类,并且得到了分值 s=[13,-
一. 损失函数    在上一讲的线性分类器中,我们使图像与一个权重w相乘,然后输出每个分类可能性的分数。某个类别的分数越高,图像就越有可能是这一类。但是如何确定w的好坏,我们需要一个评价的标准。    我们可以把w输入到一个函数中,这个函数会返回对w的评价结果(一个分数),这个函数的返回值反映了w的好坏。这个函数我们就叫做损失函数。 1.1 多分类
1. L2 loss (均方损失)除以2就是可以在求导时2和1/2可以相乘抵消。蓝色的曲线表示:y=0时,变化预测值y’的函数。 绿色曲线表示:似然函数。e^-l。 是一个高斯分布。 橙色的线:表示损失函数的梯度可以看到:但真实值y‘和真实值隔得比较远的时候,梯度的绝对值比较大,对参数的更新是比较多的。随着预测值慢慢靠近真实值的时候,靠近原点的时候,梯度的绝对值会变得越来越小,也意味着参数更新的幅
roc_curveROC 曲线指受试者工作特征曲线 / 接收器操作特性 (receiver operating characteristic , ROC) 曲线 , 是反映灵敏性和特效性连续变量的综合指标 , 是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性
最近正在学习caffe,发现上手还是比较容易的,很快就可以训练出自己的网络啦。可是当我想绘制ROC曲线来评价一下结果的时候,却发现在找不到一个明确的办法。在各大论坛逛了一圈也问了一圈,依旧是得不到解答,于是只好自己拼凑思路找办法了。 首先要搞清楚ROC曲线需要什么数据! 这篇文章讲的很清楚啦,要ROC曲线,需要一组FPR/TPR的值。而我们通过训练出来的分类器进行测试的时候,只能得到一组F
  • 1
  • 2
  • 3
  • 4
  • 5