文章目录根据计科18大学生的成绩数据(选取两个特征:1、平均成绩GPA; 2、面向对象程序设计成绩),将计科18大学生分成 3~4个类型。将其可视化显示出来。然后,根据18级物联网分流名单,计算物联1801、物联1802两个班的学生的学生类型占比,输出物联18两个班的学生类型分布饼图。一、需要对所有学生的表进行kmeans1、Excel文件2、代码如下所示(对于Excel文件最后几行无用的
代码是在weka上二次开发的,但没有使用原来的kmeans代码,只是用了它的数据Intances,先说下与它相关的几点东西。一、KMeans算法简介输入
转载 2013-12-06 19:12:00
278阅读
2评论
k-means算法K-means算法是一种常用的算法,它是重复移动数据中心的过程,然后划分内部成员,其具体执行过程如下:1.首先随机选取k个样本作为初始均值向量2.计算每一个样本与均值向量之间的欧式距离,选取与当前样本欧式距离最小均值向量的类别作为当前样本的类别3.计算每一个类别的向量的均值重新作为新的均值向量4.重复2-3的过程直到均值向量没有变化或者达到一定的迭代次数结束本文采用
转载 2023-08-14 23:25:47
87阅读
一.kmeans算法的简介。 K-means算法也称k均值算法,是集简单和经典于一身的基于距离的算法。它采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。与分类的区别::物理或抽象对象的集合分成由类似的对象组成的多个的过程被称为。由所生成的簇是一组数据对象的集合,这些
1. Kmeans算法原理     1.1 概述         K-means算法是集简单和经典于一身的基于距离的算法         采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。         该算法认为簇是由距离靠
转载 2024-08-09 16:06:41
53阅读
与分类的区别分类:类别是已知的,通过已知分类的数据进行训练和学习,找到这些不同类的特征,再未分类的数据进行分类。属于监督学习。:事先不知道数据会分为几类,通过聚类分析将数据聚合成几个群体。不需要对数据进行训练和学习。属于无监督学习。关于监督学习和无监督学习,这里给一个简单的介绍:是否有监督,就看输入数据是否有标签,输入数据有标签,则为有监督学习,否则为无监督学习。更详尽的解释会在后
转载 2024-06-29 07:40:24
28阅读
 1. Kmeans算法原理1.1 概述K-means算法是集简单和经典于一身的基于距离的算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 1.2 算法图示假设我们的n个样本点分布在图中所示的二维空间。从数据点的大致形状可以看出它们大致为三个cluster,其中两
## 1 k-Means算法k-Means算法是一种经典的算法,也称为K均值算法。k-Means的工具原理:假设建立一个坐标系,这个坐标系的横坐标是价格,纵坐标是评论。然后根据每个物品的这两项特征将物品放置在该坐标系中,那么如何将这些物品划分为k个。此时K为自定义。例如,可以定义k为2,既将所有的物品划分为两。首先,随机选择两的中心点AB,这两的称为中心。初始的中心是随机选
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
Kmeans 是一种动态方法,其基本思想是:首先随机选取 K 个点作为初始凝聚点,按照距离最近原则划分为 K ;然后重新计算 K 个的重心作为新的凝聚点,再按照距离最近原则重新分类;重复这一过程,直到重心不再变化为止。下面是一个简单利用 kmeans 聚类分析的例子,数据为某一年全国31个省市的居民消费支出数据:食品衣着居住家庭设备交通通讯文教娱乐医疗保健其他北京4215.561184.1
背景与原理:问题与分类问题有一定的区别,分类问题是每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据为一,是无监督学习的一个典型应用。而k-means算法则是非常常见的算法,其思想是如果我们想把这些数据为k,那么我们预
转载 2024-06-07 11:49:21
31阅读
K-means算法(事先数据并没有类别之分!所有的数据都是一样的)1、概述K-means算法是集简单和经典于一身的基于距离的算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2、核心思想通过迭代寻找k个簇的一种划分方案,使得用这k个簇的均值来代表相应各类样本时所得的总体误差最小。k
转载 2023-08-25 17:25:47
313阅读
KMeans算法思想基本方法 算法代码算法时间复杂度:时间复杂度:O(T*n*k*m)空间复杂度:O(n*m)n:元素个数,k:第一步中选取的元素个数,m:每个元素的特征项个数,T:第5步中迭代的次数。算法代码:# 注意,这里采用的是完全随机初始化,这样的效果不是很好。因为可能会存在有病态的初始化结果。 # 正确方法应该是从样本中随机选择k个点作为初始点。算法损失函数:平方误差:
转载 2023-12-13 16:24:50
54阅读
无监督学习:【机器学习】使用scikitLearn对数据进行Kmeans算法的应用及密度DBSCAN【机器学习】使用scikitLearn对数据进行:高斯GaussianMixture【机器学习】使用scikitLearn对数据进行:7种异常和新颖性检测方式是典型的无监督学习的一种,它将相似的元素聚集在一起。 的应用有很多,比如降维,将一群实例点集聚成K,每个实
Kmeans算法流程从数据中随机抽取k个点作为初始的中心,由这个中心代表各个 计算数据中所有的点到这k个点的距离,将点归到离其最近的里 调整中心,即将的中心移动到的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,
转载 2024-07-16 11:24:28
100阅读
K-means算法(事先数据并没有类别之分!所有的数据都是一样的) K-means1 概述2 核心思想3 算法步骤4 代码实现 1 概述K-means算法是集简单和经典于一身的基于距离的算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 核心思想通过迭代寻找k个簇的一种划分方案,
转载 2024-04-05 13:00:09
137阅读
1 概述K-means算法是集简单和经典于一身的基于距离的算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 算法图示假设我们的n个样本点分布在图中所示的二维空间。从数据点的大致形状可以看出它们大致为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示:我们的目的是为这些数据
今日面试题请说说Kmeans的优化解析一k-means:在大数据的条件下,会耗费大量的时间和内存。 优化k-means的建议: 1、减少的数目K。因为,每个样本都要跟中心计算距离。 2、减少样本的特征维度。比如说,通过PCA等进行降维。 3、考察其他的算法,通过选取toy数据,去测试不同聚算法的性能。 4、hadoop集群,K-means算法是很容易进行并行计算的。解析二一、k-m
K-meansK-means算法简述K-means算法思考常用的几种距离计算方法KMean算法算法优缺点与适用场景优点缺点代码2D数据3D数据 K-means算法简述K-means算法,也称为K-平均或者K-均值,一般作为掌握算法的第一个算法。这里的K为常数,需事先设定,通俗地说该算法是将没有标注的 M 个样本通过迭代的方式聚集成K个簇。在对样本进行聚集的过程往往是以样本之间的距离作为指标
Kmeans算法及简单案例Kmeans算法流程选择的个数k.任意产生k个,然后确定聚中心,或者直接生成k个中心。每个点确定其中心点。再计算其新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初
转载 2023-08-25 16:25:56
167阅读
  • 1
  • 2
  • 3
  • 4
  • 5