本文介绍在ArcMap软件中,基于最大似然法实现栅格遥感影像监督分类的方法。  在文章ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类分类后处理操作()中,我们介绍了基于ENVI软件实现遥感影像监督分类的具体操作方法;本文则介绍基于ArcMap软件实现同样的遥感影像监督分类的方法。  首先,在ArcMap软件上方菜单栏中,我们选择“Customize”→“Toolbars”→“
ArcGIS 遥感图像分类图像分类数据源分类方法与样本选择样本训练图像分类分类结果 图像分类图像分类是指利用计算机将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或者其他信息,按照某种规则或者算法划分为不同的类别。目前大部分相关书籍和课程介绍遥感图像分类都采用ENVI、ERDAS等软件,分类方法也多采用平行六面体、最小距离、最大似然等。而实际上,ArcGIS提供的遥感图像分类模块已经相当成
一、遥感影像      遥感,意思是“遥远的感知”,现代遥感的定义是:不直接接触有关目标物或现象而能收集信息,并能对其进行分析,解译和分类等的一种技术。      1.定义:凡是只记录各种地物电磁波大小的胶片,称为遥感影像      2.用计算机处理的遥感影像必须是数字图像,拍摄出的模拟图像需必须使用图像扫描
目录第一章 高分遥感图像分类概述1、遥感图像分类概念与内涵1)、数字图像处理的三个层次2)、图像处理技术分类的三种基本范畴3)、遥感最终目的4)、遥感分类定义5)、遥感分类意义6)、遥感分类原理2、遥感图像分类的技术发展1)、遥感分类方法概述2)、监督/非监督分类方法比较3)、深度学习思想4)、传统遥感图像分类中存在的问题3、高分辨率遥感图像分类理解1)、载荷特色2)、分类的难点 3)、
基于SegNet和UNet的遥感图像分割代码解读 目录基于SegNet和UNet的遥感图像分割代码解读前言概述代码框架代码细节分析划分数据集gen_dataset.pyUNet模型训练unet_train.py模型融合combind.pyUNet模型预测unet_predict.py分类结果集成ensemble.pySegNet模型训练segnet_train.py 前言上了一学期的课,趁着寒假有
 刚开始接触深度学习就是看的这个算法,想想当时连python语言都不会,虽然今天依旧咸鱼一条,但是也能用上网络做一点事情了,源码是北京邮电大学的道路识别比赛,采用的torch框架,也算是比较流行框架,网络结构还是端到端的下采样用resnet34,代码讲解想了解的可以看源码,本文主要介绍如何用自己的数据训练,以及训练自己数据中遇到的一些问题。torch中自带训练好的模型,调用也很简单,获取
遥感影像分类之后需要进行分类精度评价,精度评价方法中最常见的就是混淆矩阵和kappa系数。现把指标列举如下: 混淆矩阵(confusion matrix) 误差矩阵(error matrix)又称混淆矩阵(confusion matrix),是一个用于表示分为某一类别的像元个数与地面检验为该类别数的比较阵列。通常,阵列中的列代表参考数据,行代表由遥感数据分类得到的类别数据。有像元数和百分比表示两
目录前言课题背景和意义实现技术思路一、遥感图像分类基础二、常用遥感图像分类方法三、集成学习分类技术四、半监督学习分类五、主动学习六、半监督与主动学习集成七、多视图学习实现效果图样例最后前言     ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,
Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead全色和多光谱图像融合(Panchromatic and mu
按传感器的工作方式分为被动遥感和主动遥感。成像遥感:传感器接收的目标电磁辐射信号可转化为数字或模拟图像。摄像成像类型分为三种:摄像成像(光学/电成像)、扫描成像(光电成像)、微波成像(雷达成像)。非成像遥感:传感器接收的目标电磁信号输出或记录在磁带上而不产生图像。传感器的分辨率:传感器区分自然特征相似或光谱特征相似的相邻地物能力。分为:辐射分辨率、空间分辨率、时间分辨率、光谱分辨率。辐射分辨率:传
实验六、遥感图像分类一、实验目的熟悉遥感影像监督分类和非监督分类的主要方法熟练ENVI分类处理流程和主要步骤掌握ENVI ROI工具和面向对象分类工具二、实验基本要求认真阅读和掌握本实验的程序。上机操作本模块的运行和应用。保存与记录实验结果,并进行分析总结。实验报告中要求有清晰的步骤及相应结果(图或表等)。三、实验时间和地点地点:时间:四、实验条件硬件:PC电脑(Windows 7操作系统)软件:
第一步:选择数据 在 Toolbox 里打开 Feature Extraction/Example Based Feature Extraction Workflow, 选择数据data2015。第二步:影像分割 通过分割获取影像中的对象,在面板中设置相关参数即可执行分割,得到分割结 果。可以勾选面板中的 preview 选项,这样可以在原影像上观察到采用设置参数 的分割效果,根据预览的结果调节参
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘
1.介绍针对在使用传统图像处理工具时可能遇到的困难,深度学习已成为医疗保健领域的主要解决方案。因为医学图像比标准图像更难处理(高对比度、人体的广泛变化……)深度学习用于分类、对象检测,尤其是分割任务。在分割方面,深度学习用于分割人体器官,如肝脏、肺和……或分割来自身体不同部位的肿瘤。医学图像有很多不同的类型,例如 MRI(主要用于脑肿瘤分割)、CT 扫描、PET 扫描等。本文将重点介绍 CT 扫描
遥感数据集制作ArcGis+Python一、选择裁剪合适的影像区域二、创建标签shp文件,目视解译勾画标签区域三、标签shp修改属性并转换为tif文件四、使用python滑动裁剪图像及标签五、数据增强六、训练集(图像,标签)和验证集(图像,标签) 制作遥感数据集首先要有遥感影像数据。影像数据种类、来源很多,这里以GF-2的影像数据为例,制作用于 语义分割的数据集。直接获取的遥感影像需要进行预处
遥感图像语义分割——影像拼接和去除背景 文章目录遥感图像语义分割——影像拼接和去除背景1.影像拼接2.去除背景 之前的两篇文章收到不少朋友的私信,前面文章写的是使用模型训练前的工作,这篇文章介绍一下分割后处理的工作。1.影像拼接 影像拼接指的是当我们需要生成一个产品,如何将一张张的识别结果拼接(如果有需要的话可能还涉及遥感图像的拼接)。这里介绍在python中如何完成影像拼接的工作。直接上代码:#
早在20世纪70年代,人们就开始利用计算机进行卫星遥感图像的解译研究,其主要方法就是遥感图像目视判读,它依赖于图像解译人员的解译经验与水平。20世纪80年代,主要是利用统计模式识别方法进行遥感图像的计算机分类,这种方法的特点是根据图像中地物的光谱特征对影像中的地物进行分类。20世纪90年代以来,涌现出了大量的遥感图像分类方法,如人工智能分类法、遥感与GIS结合法、面向对象的分类法、多源信息复合分类
Author:HanDi 数据挖掘课上一个小实验,用matlab自带的kmeans函数实现遥感图像分类,代码总体简单整洁,注释详细,可轻松修改自用,但是我觉得自己选的分类结果颜色是丑了点,大家可以通过修改colormap自定义颜色,包括colorbar。从图中不难看出,最后效果图没有经过分类后处理,有很多细小和破碎斑块,使得分类结果的视觉效果不是那么好下面是完整代码,我的MATLAB版本是 202
基于PyTorch,使用预训练的GoogLeNet实现UC-Merced数据集分类数据集准备定义网络使用GPU训练结果 数据集准备数据集样本量不大:UC-Merced数据集及介绍 由于torchvision中并没有UC-Merced数据集,因此要自己提前下载,作为自己的数据集使用。本文首先制作数据集的List文件(索引),然后用Dataset类导入。import torch import tor
    传统的分类方法分两种:监督分类和非监督分类。监督分类要求对所要分类的地区必须要有先验的类别知识,即先要从所研究地区中选择出所有要区分的各类地物的训练区,用于建立判别函数。常用的监督分类方法有:K近邻法、马氏距离分类、最大似然法等方法。监督分类方法主要有:均值、方法等。研究者对非监督分类产生的类别较难控制监督分类,结果通常不理想。 &nbsp
  • 1
  • 2
  • 3
  • 4
  • 5