引入注意力机制原因在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。然而RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。与此同时,解码的目标词语可能只与原输入的部分词语有关,而并不是
转载
2023-08-13 14:44:16
150阅读
文章目录? 介绍? SE 模块? SE 模块应用分析? SE 模型效果对比? SE 模块代码实现? SE 模块插入到 DenseNet 代码实现 ? 介绍SENet 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。? SE
转载
2024-01-03 06:36:48
104阅读
目录0.Transformer介绍1.self-attention 和Multi-heads self-attention1.1 self-attention(自注意力机制)1.2 Multi-heads self-attention(多头自注意力机制)2.网络结构2.1 encoder(编码器)2.2 decoder(解码器)2.3 Position-wise Feed-Forward Netw
目录什么是注意力机制1、SENet的实现2、CBAM的实现3、ECA的实现4、CA的实现 什么是注意力机制注意力机制是深度学习常用的一个小技巧,它有多种多样的实现形式,尽管实现方式多样,但是每一种注意力机制的实现的核心都是类似的,就是注意力。注意力机制的核心重点就是让网络关注到它更需要关注的地方。当我们使用卷积神经网络去处理图片的时候,我们会更希望卷积神经网络去注意应该注意的地方,而不是什么都关
转载
2024-07-08 15:05:37
13阅读
self attention 自注意力机制——李宏毅机器学习课程笔记假如我们要处理输入向量与输出向量个数一样多的问题,比如给定一个句子,每个单词都是一个向量,要判断并输出每个单词的词性,我们肯定要考虑到每个词与这个文本序列中其他词的相关性。以上图为例,a^1 - a^4 是四个词向量,自注意力机制的总体流程就是,首先计算出第i个词与第j个词的相关性α(i,j),再根据相关性的大小,计算出最后第i个
转载
2024-04-28 15:05:51
85阅读
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见)。随着注意力机制的深入研究,各式各样的attention被研究者们提出。在2017年6月google机器翻译团队在arXiv上放出的《Attention is all y
转载
2023-10-25 14:15:59
130阅读
摘要视觉注意已经成功地应用于结构预测任务,如视觉字幕和问题回答。现有的视觉注意力模型一般是空间的,即注意力被建模为空间概率,该空间概率对编码输入图像的CNN的最后一个卷积层特征图进行重新加权。 然而,我们认为,这种空间注意并不一定符合注意力机制——一种结合了随时间推移的上下文注视的动态特征提取器,因为CNN的特征是空间的、通道的和多层次的。在本文中,我们介绍了一种新的卷积神经网络,称为SCA-CN
转载
2024-05-28 23:30:30
31阅读
# CNN 注意力机制在 PyTorch 中的实现
卷积神经网络(CNN)在图像处理和计算机视觉任务中取得了显著的成功。近年来,注意力机制也逐渐被引入到CNN中,以提高模型的性能。本文将探讨如何在PyTorch中实现CNN和注意力机制的结合,并提供相应的代码示例。
## 什么是注意力机制?
注意力机制是一种模仿人类视觉的机制,使模型专注于输入的某些部分,而忽略其他部分。这一特性使得模型在处理
注意力机制和Seq2Seq模型1.基本概念2.两种常用的attention层3.带注意力机制的Seq2Seq模型4.实验1. 基本概念Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs)。\(?_?∈ℝ^{?_?}, ?_?∈ℝ^{?_?}\). Query \(?∈ℝ^{?_?}\) , attention layer得到
转载
2024-05-14 15:10:57
66阅读
自注意力机制(Self-attention)背景最近,学了好多东西,今天看了一下李宏毅老师讲解的自注意力机制,因此在这记录一下,以供日后复习,同时自己学习消化知识也好。综述一般来说,模型的输入输出有三种:N个输入,经过模型计算后,输出N个结果,也就是对输入向量进行计算,从而得到每个向量对应的输出值。N个输入,送入模型进行计算,最终得到一个结果。这就是平时常见的比如,文本分类、情感分析等。任意个输入
转载
2024-06-07 11:34:33
270阅读
self attention是注意力机制中的一种,也是transformer中的重要组成部分,本文先重新回归一下注意力机制,再做进一步介绍。正如之前说的,注意力机制的目的是根据我们的目标,去关注部分细节,而不是基于全局进行分析,所以核心就是如何基于目标确定我们要关注的部分,以及在找到这部分细节之后进一步进行分析。这里先以文本匹配作为例子进行介绍。假设我们要分析两个文本是不是重复的:我们可以结合Bi
一、Vision Transformer介绍Transformer的核心是 “自注意力” 机制。论文地址:https://arxiv.org/pdf/2010.11929.pdf自注意力(self-attention)相比 卷积神经网络 和 循环神经网络 同时具有并行计算和最短的最大路径⻓度这两个优势。因此,使用自注意力来设计深度架构是很有吸引力的。对比之前仍然依赖循环神经网络实现输入表示的自注意
转载
2023-10-21 06:58:04
613阅读
说在前面的前言什么是注意力机制代码下载注意力机制的实现方式1、SENet的实现2、CBAM的实现 3、ECA的实现注意力机制的应用说在前面的前言注意力机制是一个非常有效的trick,注意力机制的实现方式有许多,我们一起来学习一下。(最近在研究注意力机制内容,顺手写了一些,感谢文后两篇文章的指点。日常记录,会持续更新记录更多的注意力机制架构方法)
什么是注意力机制
转载
2024-01-19 11:03:48
205阅读
论文题目:《CBAM: Convolutional Block Attention Module》 论文地址:https://arxiv.org/pdf/1807.06521.pdf 文章目录一、前言二、注意力机制(CBAM)2.1 Channel Attention Module(CAM)2.1.1(多层感知机)MLP1.什么是激活函数2. 为嘛使用激活函数?3.激活函数需要具备以下几点性质:
转载
2024-01-30 01:14:23
445阅读
DANet Attention论文链接r:Dual Attention Network for Scene Segmentation模型结构图: 论文主要内容在论文中采用的backbone是ResNet,50或者101,是融合空洞卷积核并删除了池化层的ResNet。之后分两路都先进过一个卷积层,然后分别送到位置注意力模块和通道注意力模块中去。 Backbone:该模型的主干网络采用了ResNet系
转载
2023-10-03 11:54:50
344阅读
前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译Effective Approaches to Attention-based Neural Machine Translation简介转存失败重新上传取消转存失败重新上传取消转存失败重新上传取消Attention介绍在翻译的时候,选择性的选择一些重要信息。详情看这篇文章 。本着简单和有效的原则,本论文提出了两种注意
转载
2024-08-19 11:04:20
24阅读
PyTorch实现各种注意力机制。注意力(Attention)机制最早在计算机视觉中应用,后来又在 NLP 领域发扬光大,该机制将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。2014 年,Google DeepMind 发表《Recurrent Models of Visual Attention》,使注意力机制流行起来;2015 年,Bahdanau 等人在论文
转载
2023-10-04 22:33:38
166阅读
目录一、注意力机制简介二、pytorch代码实现注意力机制 一、注意力机制简介注意力机制是深度学习中重要的技术之一,它可以使模型在处理序列数据时,更加集中地关注重要的部分,从而提高模型的性能和效率。在自然语言处理和机器翻译等任务中,注意力机制已经得到广泛应用。 在机器视觉领域,注意力机制也被广泛应用,特别是在图像分类、目标检测和图像分割等任务中。在这些任务中,注意力机制通常用来提高模型对关键区域
转载
2023-10-15 17:07:20
262阅读
在深度学习中,我们经常使用卷积神经网络(CNN)或循环神经网络(RNN)对序列进行编码。 想象一下,有了注意力机制之后,我们将词元序列输入注意力池化中, 以便同一组词元同时充当查询、键和值。 具体来说,每个查询都会关注所有的键-值对并生成一个注意力输出。 由于查询、键和值来自同一组输入,因此被称为 自注意力(self-attention) [Lin et al., 2017b][Vaswani e
转载
2024-04-17 05:44:11
231阅读
目录1 Introduction2 GAT Architecture2.1 Graph Attentional Layer 2.2 Comparisons To Related Work 3 Conclusions1 IntroductionGraph Attention Networks又称为GATs,一种基于注意力的体系结构来执行图结
转载
2024-06-14 22:21:01
175阅读