1. 引言回到线性回归模型中,训练集和代价函数如下图如果我们还用J(θ)函数做为逻辑回归模型的代价函数,用H(x) = g(θ^T * x),曲线如下图所示发现J(θ)的曲线图是"非凸函数",存在多个局部最小值,不利于我们求解全局最小值因此,上述的代价函数对于逻辑回归是不可行的,我们需要其他形式的代价函数来保证逻辑回归的代价函数是凸函数。 2. 代价函数这里我们先对线性回归模型中的代价函数J(θ)
Regression(回归)的步骤看似比较复杂,其实也就是上节课老师所讲的三步:引入一组model ➡️评估这组model 的好坏 ➡️得到最佳的function。老师引入了一个很有趣的例子:选择培养宝可梦。 找一个function,输入一只宝可梦的信息,预测它的CP(战斗力)的值。 一、 初始的方法Model 线性Model:y=b+w•xcp,w和b是参数,xcp是进化前的CP值。 Train
转载
2024-05-15 06:24:57
29阅读
上次介绍了线性回归的基本知识,这次主要介绍sklearn的线性回归例子,以及其他各种回归分析方法~~
前情提要:通俗得说线性回归算法(一)线性回归初步介绍一.sklearn线性回归详解1.1 线性回归参数介绍完线性回归,那么我们来看看如何运用sklearn来调用线性回归模型,进行训练和预测。def LinearRegression(fit_interce
转载
2024-04-24 15:30:21
191阅读
逻辑回归的常见面试点总结:(逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。)逻辑回归和线性回归的联系和区别参考原文:逻辑回归:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的(−∞,+∞)结果,通过sigmoid函数映射到(0,1)之间。线性回归决策函数:hθx=θ
转载
2024-05-20 16:30:32
44阅读
点赞
目录用线性回归做分类sigmoid模型假设求解-梯度提升法优点与其他模型的比较与线性回归一个角度区别与联系与最大熵模型与SVM1、LR和SVM有什么相同点2、LR和SVM有什么不同点与朴素贝叶斯两者的不同点两者的相同点模型细节适合离散特征为什么使用sigmoid函数?指数族分布广义线性模型定义为何使用最大似然估计而不用均方误差? 用线性回归做分类线性回归的输出是一个数值,而不是一个标签,显然不能
转载
2023-08-08 08:48:43
112阅读
1、线性回归
由上图我们可以看到,线性回归能够对连续值结果进行拟合并预测。其回归方程为:
y=β0+β1x1+β2x2+...+βnxn=xTβ
y
=
β
0
转载
2024-08-11 15:46:27
104阅读
用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?逻辑回归是预测结果是界于0和1之间的概率,可以适用于连续性和类别性自变量,容易使用和解释。逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两
转载
2023-08-09 15:32:04
118阅读
1.分类问题 在分类问题中,你要预测的变量是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。 我们从二元的分类问题开始讨论。 我们将因变量(dependent variable)可能属于的两个类分别称为负向类(negative class)和正向类
转载
2024-04-08 11:06:10
197阅读
1、LR和SVM有什么相同点 (1)都是监督分类算法,判别模型; (2)LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题); (3)两个方法都可以增加不同的正则化项,如L1、L2等等。所以在很多实验中,两种算法的结果是很接近的。2、LR和SVM有什么不同点 (1)本质上是其loss function不同; 区别在于逻辑回归采用的是Logis
转载
2024-03-18 17:01:17
74阅读
1. 前言在机器学习的分类问题领域中,有两个平分秋色的算法,就是逻辑回归和支持向量机,这两个算法个有千秋,在不同的问题中有不同的表现效果,下面我们就对它们的区别和联系做一个简单的总结。2. LR和SVM的联系都是监督的分类算法。都是线性分类方法 (不考虑核函数时)。都是判别模型。3. LR和SVM的不同
损失函数的不同,LR是对数损失函数,SVM是hinge损失函数。SVM不能产生概率,LR可以产
转载
2023-12-13 19:52:35
82阅读
1. 算法原理logistic/sigmoid函数作用:把取值范围从负无穷到正无穷的公式计算结果,压缩到0和1之间,这样的输出值表达为“可能性”更直观。逻辑回归算法用于估计预测目标的可能性,它属于软分类算法,即最终得到的是一个具体的概率,而不仅仅是“是”或“不是”这样的二分类结果;逻辑回归能提供一个样本属于正类的可能性是多少,比如假设对于样本x,回归系数w,(w^T是向量w的转置),使用
转载
2024-06-24 06:38:31
113阅读
逻辑回归模型(Logistic Regression, LR)基础
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心。本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化、逻辑回归与计算广告学等,请关注后续文章。1 逻辑回归
转载
2024-08-20 22:27:08
107阅读
学习内容:1、逻辑回归与线性回归的联系与区别2、 逻辑回归的原理3、逻辑回归损失函数推导及优化4、 正则化与模型评估指标5、逻辑回归的优缺点6、样本不均衡问题解决办法7. sklearn参数 逻辑回归和线性回归的区别和联系 直观:逻辑回归就是线性回归的损失函数加个sigmoid函数,两者属于广义线性模型家族。1.要解决的问题:逻辑回归解决的是分类问题,在空间找出决策
转载
2024-05-21 12:06:50
65阅读
线性回归线性模型:
一般用向量形式改成:
,
给定数据集
,其中
。数据集中的属性,分为有序属性和无序属性,有序的属性可以用连续值来代替,而无序的属性值如“黄瓜”,“西瓜”和“冬瓜”等可以用k维向量(1,0,0),(0,1,0),(0,0,1)来代替。
若将无序属性连续化,则会不恰当引入序的关系,对后续处理如
转载
2024-03-15 05:58:06
93阅读
Lecture 6_Logistic Regression 逻辑回归6.1 分类问题 Classification6.2 假设表示 Hypothesis Representation6.3 决策边界 Decision Boundary6.4 代价函数 Cost Function6.5 简化的代价函数和梯度下降 Simplified Cost Function and Gradient Desce
转载
2024-05-06 22:58:26
34阅读
一、线性回归1.概述:什么是回归问题:对于一组训练集(输入and对应的输出),通过回归算法拟合出一条直线(or曲线)通过该曲线可以有效预测出未知数据对应的输出。例如下图: 2.具体方法:共m个数据,每个数据n个特征 ①随机形成一条直线(or曲线,以直线举例) ②对于每一个训练值,求
转载
2024-05-07 20:11:27
232阅读
逻辑回归一、逻辑回归介绍逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛。1.逻辑回归的应用场景2.逻辑回归的原理输入激活函数3.损失以及优化损失优化4.小结二、逻辑回归api介绍三、案例:癌症分类预测-良/恶性乳腺癌肿瘤预测1.背景介绍2.案例分析3.代码实现import pandas as pdimport numpy as n
原创
2021-08-14 00:01:42
550阅读
Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。 Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。 https://www.cnblogs.com/BYRans/p/4713624.html ...
转载
2021-08-24 17:54:00
305阅读
2评论
Logistic Regression使用TensorFlow库的逻辑回归学习算法示例。此示例使用手写数字的MNIST数据库(http://yann.lecun.com/exdb/mnist/)Author: Aymeric DamienProject: https://github.com/
翻译
2022-03-10 15:15:53
164阅读
逻辑回归简单理解
原创
2022-08-26 13:59:37
197阅读