HDFS(Hadoop Distributed File System)分布式文件存储系统,主要为各类分布式计算框架如Spark、MapReduce等提供海量数据存储服务,同时HBase、Hive底层存储也依赖于HDFS。HDFS提供一个统一的抽象目录树,客户端可通过路径来访问文件。HDFS集群分为两大角色:Namenode、Datanode(非HA模式会存在Secondary Namenode)
导读 本文详细地介绍了Doris的compaction机制。
首先,从producer-consumer模式以及compaction任务提交的permission机制对compaction的总体设计和架构原理进行了剖析;然后,针对cumulative compaction的size_based策略进行了详细地介绍;最后,对base compaction的流程进行了深入地
Doris之磁盘空间管理(重点)磁盘存储空间有关的系统参数和处理策略。Doris 的数据磁盘空间如果不加以控制,会因磁盘写满而导致进程挂掉。因此我们监测磁盘的使用率和剩余空间,通过设置不同的警戒水位,来控制 Doris 系统中的各项操作,尽量避免发生磁盘被写满的情况。名词解释FE:Frontend,Doris 的前端节点。负责元数据管理和请求接入。 BE:Backend,Doris 的后端节点。负
读数据过程: 1.客户端调用FileSystem 实例的open 方法,获得这个文件对应的输入流InputStream2.访问NameNode,获取文件对应数据块的保存位置,包括副本位置。3.获得输入流之后,客户端便调用read()方法读取数据。选择最近的datanode进行连接并读取数据。4.如果客户端与一个datanode位
Hadoop培训认证:HDFS文件存取机制,一个分布式文件系统最基本的功能就是读和写,本节将描述HDFS的文件存取机制。1.HDFS读文件数据流在读取HDFS的文件时,首先客户端调用FileSystem的open( )函数打开文件,DistributedFileSystem用RPC调用元数据节点,得到文件的数据块信息。对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。Distribute
再理解HDFS的存储机制1. HDFS开创性地设计出一套文件存储方式,即对文件分割后分别存放;2. HDFS将要存储的大文件进行分割,分割后存放在既定的存储块(Block)中,并通过预先设定的优化处理,模式对存储的数据进行预处理,从而解决了大文件储存与计算的需求;3. 一个HDFS集群包括两大部分,即NameNode与DataNode。一般来说,一个集群中会有一个NameNode和多个DataNo
同时对于 FutureRetailer 来说,过去的数据分析只是一个方面,更为重要的是对于未来的预测和分析。比如未来商品销售估计,并据此制订采购计划 。随着新零售的兴起,未来的消费者需要的是更为个性化的服务和产品,如何将这种个性化的商品和服务提供给消费者?马爸爸也说过:“纯电商时代过去了,未来十年是新零售的时代”。对 FutureRetailer 来说,未来的购物也许将会是如下情景:1 )一位资深
在《HDFS源码分析DataXceiver之整体流程》一文中我们知道,无论来自客户端还是其他数据节点的请求达到DataNode时,DataNode上的后台线程DataXceiverServer均为每个请求创建一个单独的后台工作线程来处理,这个工作线程就是DataXceiver。并且,在线程DataXceiver处理请求的主方法ru
导入总览导入(Load)功能就是将用户的原始数据导入到 Doris 中。导入成功后,用户即可通过 Mysql 客户端查询数据。Doris 支持多种导入方式。建议先完整阅读本文档,再根据所选择的导入方式,查看各自导入方式的详细文档。基本概念Frontend(FE):Doris 系统的元数据和调度节点。在导入流程中主要负责导入规划生成和导入任务的调度工作。Backend(BE):Doris 系统的计算
如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源,一个比较高效便捷的方法就是使用“Bulk Load”方法,即HBase提供的HFileOutputFormat类。 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种格式文件,然后上传至合适位置,即完成巨量数据快速入库。配合mapreduce完成,高效便捷,而且不占用region资源。
场景:
有一个订单功能,里面的主表有几千万数据量,加上关联表,数据量达到上亿。我们尝试了优化表结构、业务代码、索引、SQL 语句等办法来提高响应速度,但查询速度还是很慢。一、什么是冷热分离最终,我们决定采用一个性价比高的解决方案,在处理数据时,我们将数据库分成了冷库和热库 2 个库,不常用数据放冷库,常用数据放热库。这就是“冷热分离”。二、什么情况下使用冷热分离?数据走到终态后,只有读没有写的需求
再写 HDFS Federation机制的时候,发现基础不扎实,需要将之前的hadoop再详细记录一下原理(重点只说Hadoop2.0版本): Hadoop2.0版本,引入了Yarn。核心:HDFS+Yarn+MapreduceYarn是资源调度框架。能够细粒度的管理和调度任务。此外,还能够支持其他的计算框架,比如spark等。存储的基础知识以及原理:元数据信息和
HDFS的读写流程 & secondary namenode的数据写入流程1)HDFS的数据写入流程
2)HDFS的数据读取流程
3)SNN的数据写入的流程1)HDFS的数据写入流程(1)客户端发送写入请求给 namenode(2)namenode 接收到请求,然后首先判断当前操作的用户是否具有写入的权限,如果没有则拒绝请求,如果有权限,接着判断要写入的数据目录下是否存在这个文件,如果存在
在一个现代化的时候,界面不好看的 Eclipse 和操作易用性相比而言更高的 IntelliJ Idea。而在进行 Hadoop 进行编程的时候,最基本的是需要导入相应的 Jar 包,而更为便宜的则是使用 Maven 来进行包的依赖管理,而本文则结合 Gradle 来处理引入最基本的 Hadoop 包,配置运行环境。新建一个 Gradle 项目在新建时要选择 Gradle 项目,并在连接过程中自动
文章目录Hadoop框架HDFS NN、SNN、DN工作原理HDFS概述HDFS架构NameNodeSecondary NameNodeSecondary NameNode的工作流程什么时候checkpiontDataNode上传一个CentOS-7.5-x86_64-DVD-1804.iso大文件来体现分布式管理系统通过ui页面观察文件被block划分HDFS的Trash回收站 Hadoop框
HDFS(Hadoop Distributed File System)是一个运行在商用机器上面的分布式文件系统,其设计思想来自于google著名的Google File System论文。HDFS的设计目标:为何产生HDFS?由于数据量的急剧增大,原有的单机多磁盘因为速度,存储量等原因,已经远远无法满足要求,HDFS应运而生。 HDFS解决的痛点:高容错性:HDFS设计运行在成百上千的机器上,任
Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD;使用本地文件创建RDD;使用HDFS文件创建RDD。
1、并行化集合
如果要通过并行化集合来创建RDD,需要针对程序中的集合,调用SparkContext的parallelize()方法。Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中
操作场景默认情况下,HDFS NameNode自动选择DataNode保存数据的副本。在实际业务中,可能存在以下场景:DataNode上可能存在不同的存储设备,数据需要选择一个合适的存储设备分级存储数据。DataNode不同目录中的数据重要程度不同,数据需要根据目录标签选择一个合适的DataNode节点保存。DataNode集群使用了异构服务器,关键数据需要保存在具有高度可靠性的机架组中。对系统的
在hadoop安装目录下:/hadoop2/hadoop-2.7.31.创建目录bin/hdfs dfs -mkdir /userbin/hdfs dfs -mkdir /user/<username>在HDFS中创建一个名为path的目录,如果它的上级目录不存在,也会被创建,如同linux中的mkidr –p。bin/hdfs dfs -mkdir -p /usr/file2.将本地
hdfs(hadoop分布式系统)设计需要考虑的问题?第一个就是数据是如何存储吗(数据的物理存储)每台机器上都有个datanode节点。这个节点是用来存储数据的。hdfs对一个大的文件进行分块,每个版本对每一个分块大小可能不尽相同。Hadoop 1版本默认是64M,假设80M东西,就被分成64M和16M东西。那么他是按照这样的格式来划分的。每个快是分散存储的。可能这个快64M是在这个datonod