随机性(方差)->噪声->波动大小传统方法https://www.jiqizhixin.com/articles/2016-11-21-4 batch批训练—不同的更新梯度的方式batch梯度下降分为三种:batch梯度下降、随机化batch梯度下降、mini-batch梯度下降1.batch 遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都
算法介绍:梯度下降算法是一种利用一次导数信息求取目标函数极值的方法,也是目前应用最为广泛的局部优化算法之一。其具有实现简单、容易迁移、收敛速度较快的特征。在求解过程中,从预设的种子点开始,根据梯度信息逐步迭代更新,使得种子点逐渐向目标函数的极小值点移动,最终到达目标函数的极小值点。注意,沿梯度正向移动,将获取目标函数局部极大值(梯度上升算法);沿梯度反向移动,将获取目标函数局部极小值(梯度下降算法
转载 2023-06-21 22:27:41
75阅读
# 梯度下降法(BGD)在Python中的实现指南 梯度下降法是机器学习和深度学习中常用的优化算法,主要用于最小化损失函数。接下来,我们将通过一个具体的例子来学习如何在Python中实现批量梯度下降法(Batch Gradient Descent, BGD)。 ## 1. 梯度下降法的流程 以下是实现梯度下降法的基本步骤: | 步骤 | 描述
原创 2024-09-11 07:25:27
50阅读
一、通过一个例子来看梯度下降法是怎么算的函数,求解其最小值  1.求解梯度函数      2.给定初始点,计算出该点的梯度,开始迭代  3.计算初始点梯度模,判断是否满足终止条件,如果满足,得到终点。如果不满足,求得当前最优的学习率,然后迭代。 function [k ender]=steepest(f,x,e) % 梯度下降法函数function
转载 2023-09-04 15:42:06
117阅读
  在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。  下面我们以线性回归算法来对三种梯度下降法进行比较。1. 批量梯度下降BGD   批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近。在梯度下降算法中。都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表。输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差。之后再平方乘以1/2,而且当中 注意到x能够一维变量。也能够是多维变量,
转载 2018-03-25 08:34:00
221阅读
2评论
1.前言 这几种方法呢都是在求最优解中常常出现的方法。主要是应用迭代的思想来逼近。在梯度下降算法中,都是环绕以下这个式子展开: 当中在上面的式子中hθ(x)代表。输入为x的时候的其当时θ參数下的输出值。与y相减则是一个相对误差,之后再平方乘以1/2,而且当中 注意到x能够一维变量,也能够是多维变量。
转载 2018-03-02 08:13:00
586阅读
2评论
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
梯度下降优化一个深度学习项目一般由数据、模型、损失、优化、训练和预测等部分构成,对于其中的“优化”部分,我们最熟悉的可以说就是 梯度下降(gradient descent) 算法了。然而,在实际的深度学习架构中,我们却经常看到的是Adam优化器,那么Adam和梯度下降算法有什么关系呢?又有哪些梯度下降算法的变体呢?以及又有哪些优化梯度下降算法的策略呢? 本文参考Sebastian Ruder的论文
此处对比批量梯度下降、随机梯度下降、小批量梯度下降算法的优缺点算法批量梯度下降(Batch Gradient Descent, BGD)随机梯度下降(Stochastic Gradient Descent, SGD)代价函数梯度下降算法比较每一次更新参数θ时,都需要计算所有m个训练样本的差平方项求和,然后更新一次θ值,当m很大时,每一次迭代计算量大,且只能更新优化一小步每一次更新参数θ时,不需要对
记录TensorFlow听课笔记 文章目录记录TensorFlow听课笔记一,梯度下降法:求解函数极值问题二,梯度下降法的优化 多层神经网络——非线性分类问题 损失函数不是凸函数,很难计算解析解 通常采用梯度下降法,得到数值解一,梯度下降法:求解函数极值问题批量梯度下降 随机梯度下降批量梯度下降由所有样本确定梯度方向 每一步都是准确地向着极值点趋近,迭代次数少 收敛于全局极小值或局部
转载 2024-04-16 15:51:50
205阅读
              在学习线性回归的时候很多课程都会讲到用梯度下降法求解参数,对于梯度下降算法怎么求出这个解讲的较少,自己实现一遍算法比较有助于理解算法,也能注意到比较细节的东西。具体的数学推导可以参照这一篇博客一、       首
目录  回顾简单RNN的梯度消失问题   LSTM如何解决梯度消失   遗忘门对梯度消失的影响   遗忘门的初始化技巧   参考资料  回顾简单RNN的梯度消失问题在简单RNN的前向传播过程中,输入的数据循环地与隐藏层里的权重W(都是很小的数)做乘法运算,那么损失函数对较长时间步前的W的梯度就会很小(因为W会累乘,激活函数大多也是小数),详细内容见【深度学习面试题35:RNN梯度消失问题
随机梯度下降法(sgd),我们在很久就介绍过,有兴趣的可以参阅或直接跳过,先看完这篇文章回过头来再熟悉以前的文章也可以。这算是一个新的复习与巩固,下面将在MXNet框架中实现,分为随机梯度下降与小批量随机梯度下降,这章主要是通过数学公式的推导去了解它们并熟悉其优缺点。随机梯度下降目标函数通常是训练数据集中有关各个样本的损失函数的平均,所以梯度下降的情况,每次自变量迭代的计算开销是O(n)【n是样本
# Python批量梯度下降实现指导 在机器学习和深度学习中,梯度下降是最常用的优化算法之一。批量梯度下降是其中一种变体,适用于大数据集。本文将详细指导你如何使用Python实现批量梯度下降。 ## 流程概述 在实现批量梯度下降的过程中,我们可以将整个过程分为以下几个步骤: | 步骤 | 描述 | |------|-----------------
1 批量梯度下降 在经典的随机梯度下降算法(批量梯度下降)中,迭代下降公式是 $x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)$ 以一元线性回归的目标函数为例 $\sum \limits _{i=1}^{n}\left(a x_{i}+b-y_{i}\ ...
翻译 2021-07-26 01:16:00
1415阅读
2评论
梯度下降法(Gradient Descent)梯度下降(GD)是将风险函数、损失函数最小化的一种常用的方法,是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。基本原理目标函数J(θ)关于参数θ的梯度是目标函数上升最快的方向。对于最小化优化问题,只需要将参数沿着梯度相反的方向前进一个步长,就可以实现目标函数的下降。这个步长又称为学习速率η。参数更新公式如
梯度下降方法是目前最流行的神经网络优化方法,现在主流的深度学习框架(caffe,keras,MXNET等)都包含了若干种梯度下降算法。虽然我们可以把它们看成黑盒直接使用,但是在不同场合下相同的算法可能有着很大的性能差异,因此,了解这些算法各自内在的原理可以帮助我们更好地训练网络。基本梯度下降算法有三种基本的梯度下降算法,他们的主要区别在于用于计算一次目标函数梯度的样本数量。批量梯度下降(Batch
1.小批量(Mini batch)梯度下降。当待训练的样本数量比较多时(例如5000000个样本),之前所使用的梯度下降算法会一次性向量化所有样本,这样规模的向量将是非常巨大的,因此我们将样本分割成一个个小批量的数据集,例如每1000个样本作为一个样本集进行梯度下降训练。然后进行5000次循环,完成整个样本一轮训练。这种将大数据集按固定数量划分为众多小批量的数据集的方法便是小批量梯度下降算法。2.
  • 1
  • 2
  • 3
  • 4
  • 5