本文讲的是简明 TensorFlow 教程 — 第二部分:混合学习, 快速上手世界上最流行的深度学习框架。确保你已经阅读了第一部分在本文中,我们将演示一个宽 N 深度网络,它使用广泛的线性模型与前馈网络同时训练,以证明它比一些传统的机器学习技术能提供精度更高的预测结果。下面我们将使用混合学习方法预测泰坦尼克号乘客的生存概率。混合学习技术已被 Google 应用在 Play 商店中提供应用推荐。Y
PyTorch 1.6 nightly增加了一个子模块 amp,支持自动混合精度训练。值得期待。来看看性能如何,相比Nvidia Apex 有哪些优势?
即将在 PyTorch 1.6上发布的 torch.cuda.amp 混合精度训练模块实现了它的承诺,只需增加几行新代码就可以提高大型模型训练50-60% 的速度。
预计将在 P
PyTorchAuthor:louwillMachine Learning Lab 随着近几年的大力发展,PyTorch逐渐成为主流的深度学习框架。相应的PyTorch技术生态也逐渐丰富和完善。本文重点回顾和盘点PyTorch的技术生态,包含大量的工具库,遍布AI各个领域和方向。Pytorch LightningPytorch Lightning是一款基于Py
转载
2024-08-20 22:09:17
181阅读
Pytorch自动混合精度(AMP)介绍与使用背景:pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库了。本文主要从三个方面来介绍AMP:一.什么是AMP?二.为什么要使用AMP?三.如何使用AMP?四. 注意事项正文:一.什么是AMP?默认情况下,大多数深度学习框架都采用32位浮点算法进行训练。2017年,NVI
转载
2024-05-15 10:33:42
177阅读
作者:Rahul Agarwal 您是否知道反向传播算法是Geoffrey Hinton在1986年的《自然》杂志上提出的? 同样的,卷积网络由Yann le cun于1998年首次提出,并进行了数字分类,他使用了单个卷积层。 直到2012年下半年,Alexnet才通过使用多个卷积层在imagenet上实现最先进的技术来推广卷积网络。 那么,是什么让他们直到现在才这么出名? 只有在我们拥有大量计算
我们定义一个tensor默认都是FP32的,即单精度,singlefp16是半精度,half;fp64是双精度, doubleAMP自动混合精度 一般用自动混合精度(AMP, Automatic mixed precision),用半精度可能对acc的影响较大 混合精度的performance也要看网络,有
单精度和半精度混合训练 概述 混合精度训练方法,通过混合使用单精度和半精度数据格式,加速深度神经网络训练的过程,同时保持了单精度训练所能达到的网络精度。混合精度训练能够加速计算过程,同时减少内存使用和存取,并使得在特定的硬件上可以训练更大的模型或batch size。 对于FP16的算子,若给定的数
转载
2021-02-25 06:15:00
844阅读
2评论
Source内容速览‘train.py’: single training process on one GPU only.‘train_parallel.py’: signle training process on multiple GPUs using Dataparallel (包括不同GPU之间的负载均衡).‘train_distributed.py’ (recommended): mu
转载
2024-08-15 10:44:31
46阅读
作者:李长安。1 混合精度训练混合精度训练最初是在论文Mixed Precision Training中被踢出,该论文对混合精度训练进行了详细的阐述,并对其实现进行了讲解,有兴趣的同学可以看看这篇论文。1.1半精度与单精度半精度(也被称为FP16)对比高精度的FP32与FP64降低了神经网络的显存占用,使得我们可以训练部署更大的网络,并且FP16在数据转换时比FP32或者FP64更节省时间。单精度
转载
2024-07-05 11:12:35
1131阅读
通常我们训练神经网络模型的时候默认使用的数据类型为单精度FP32。近年来,为了加快训练时间、减少网络训练时候所占用的内存,并且保存训练出来的模型精度持平的条件下,业界提出越来越多的混合精度训练的方法。这里的混合精度训练是指在训练的过程中,同时使用单精度(FP32)和半精度(FP16)。 01 浮点数据类型浮点数据类型主要分为双精度(Fp64)、单精度(Fp32)、半
转载
2024-05-25 22:38:52
1554阅读
1. 前述混合精度训练(Mixed Precision Training)是一种深度学习训练技术,它使用不同精度的数据类型(如单精度FP32和半精度FP16)来执行训练过程中的不同部分,以达到加速训练、减少内存使用和降低计算开销的目的。这种训练方式可以在保持模型精度的同时,显著提高训练效率。在混合精度训练中,通常将模型的权重和激活值等参数保存在较高精度的数据类型中(如FP32),以确保模型的准确性
刚刚,Facebook 通过 PyTorch 官方博客宣布:PyTorch 1.6 正式发布!新版本增加了一个 amp 子模块,支持本地自动混合精度训练。Facebook 还表示,微软已扩大了对 PyTorch 社区的参与,现在拥有 PyTorch 在 Windows 上的开发和维护所有权。
机器之心报道,机器之心编辑部。 相比于以往的 PyTorch 版本,
转载
2024-04-23 10:39:31
64阅读
实验: 混合精度训练对比 (GTX 3090 VS TESLA V100-SXM2)经常有小伙伴问我 TESLA V100 显存 16GB 比 GTX 3090 的 24GB 少了 8GB,价格还一样,为啥要用 V100 呢? 使用精度低于 32 位浮点数的数字格式有很多好处。首先,它们需要 更少的内存,从而能够训练和部署更大的神经网络。其次,它们需要 更少的内存带宽,从而加快数据传输操作。第三,
转载
2023-09-07 16:58:45
534阅读
一说到LOD100、200、300.....很多业内人士就知道说的是模型精度,但是对于刚刚入着圈的新人来说却是个陌生的概念。今天中国BIM培训网的小编就发一篇扫盲贴,跟新人说一下什么是BIM模型精度。模型的细致程度,英文称作Level of Details,也叫作Level of Development。描述了一个BIM模型构件单元从最低级的近似概念化的程度发展到最高级的演示级精度的步骤。美国建筑
转载
2024-10-23 12:21:47
30阅读
# PyTorch 半精度:提高深度学习训练效率的利器
随着深度学习的快速发展,模型的复杂性和数据量不断增加,因此训练这些模型的计算需求也与日俱增。为了提高计算效率,PyTorch 提供了一种称为“半精度”(FP16)的方法。本文将介绍什么是半精度、其优势,及如何在 PyTorch 中实现。
## 什么是半精度?
半精度浮点数(FP16或“half precision”)是计算机中用于表示浮
文章目录一、自定义损失函数1.以函数方式定义2.以类方式定义二、学习率调整策略1.使用官方scheduler1.1 StepLR1.2 MultiStepLR1.3 ExponentialLR1.4 CosineAnnealingLR1.5 ReduceLRonPlateau1.6 LambdaLR1.7 学习率调整小结2.自定义scheduler三、模型微调(Finetune)1.模型微调流程
转载
2024-06-26 13:19:52
477阅读
Pytorch简介:Nvidia提供了一个混合精度工具apex,可以加速pytorch的训练效率(空间和时间上)。号称可以这不降低模型性能的情况下,将训练速度提升2~4倍,训练显存开销减少为原来的一半。开源地址如下:https://github.com/NVIDIA/apex,论文在此。目前该工具的版本为0.1版本,工具中主要有四个功能:amp,parallel,optimizers和normal
转载
2023-10-31 17:43:52
274阅读
网络的教程来看,在半精度amp训练出现nan问题,无非就是这几种:计算loss 时,出现了除以0的情况loss过大,被半精度判断为inf网络参数中有nan,那么运算结果也会输出nan(这个更像是现象而不是原因,网络中出现nan肯定是之前出现了nan或inf)但是总结起来就三种:运算错误,比如计算Loss时出现x/0造成错误数值溢出,运算结果超出了表示范围,比如权重和输入正常,但是运算结果Nan或I
转载
2023-11-13 08:38:37
151阅读
# 使用 PyTorch 实现混合精度训练的详细指南
在深度学习领域中,混合精度训练是一种常用的方法,可以提升模型训练的效率,减少 GPU 内存使用,进而加速训练。本文将帮助你理解如何在 PyTorch 中实现混合精度训练,简明扼要地展示需要遵循的步骤、详细代码示例和相关注释。
## 流程概述
下面是实现 PyTorch 混合精度训练的主要步骤:
| 步骤编号 | 步骤描述
Contents混合精度训练 (Mixed Precision Training)单精度浮点数 (FP32) 和半精度浮点数 (FP16)为什么要用 FP16为什么只用 FP16 会有问题解决方案损失缩放 (Loss Scaling)FP32 权重备份黑名单Tensor CoreNVIDIA apex 库代码解读opt-level (o1, o2, o3, o4)apex 的 o1 实现apex
转载
2024-01-26 17:59:58
131阅读