聚类划分方法 给定n个数据点的数据集合,构建数据集合的出K个划分,每个划分代表一个类别,2<k<sqrt(n)。算法思想,划分法需要预先指定聚类数目和聚类中心,计算每个点与其他点的距离,对于每个数据点都有n-1个距离值,对这些距离值进行排序,找出最接近的数据点,算出这些距离的和值。并进行下次迭代,这时数据中兴点位置改变,继续按照上方的步骤,逐步降低
# Python层次聚类算法:如何确定类数
层次聚类是一种广泛使用的聚类算法,它通过构建一个树状图来表达数据点之间的相似性关系。根据不同的需求,层次聚类可以产生不同数量的聚类。然而,在实际应用中,确定最佳的类数是一项挑战。本文将探讨层次聚类的基本概念,使用Python进行实现,并介绍几种确定类数的方法。
## 一、层次聚类算法概述
层次聚类主要分为两类:自底向上的凝聚方法和自顶向下的划分方法
1. 层次聚类1.1 层次聚类的原理及分类1)层次法(Hierarchicalmethods):先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。层次聚类算法根据层
转载
2023-10-26 16:11:58
258阅读
说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可。使用方法:kmeans(输入矩阵,分类个数k)。转载一:MATLAB提供了两种方法进行聚类分析:1、利用 clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;2、分步聚类:( 1)用 p
转载
2023-12-15 08:50:00
55阅读
聚类算法的种类:基于划分聚类算法(partition clustering)k-means: 是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据 k-modes: K-Means算法的扩展,采用简单匹配方法来度量分类型数据的相似度 k-prototypes: 结合了K-Means和K-Modes两种算法,能够处理混合型数据 k-medoids: 在迭代过程中选择簇中的某点作为聚点,...
原创
2021-05-20 22:57:31
963阅读
聚类算法有很多,不同聚类算法,特性不一样,使用场景不一样,根据算法思想可分为以下几类:1.基于划分方法k-means,k-modes, k-prototypes, k-medoids, CLARA, CLARANS,PCM2.基于层次方法chameleon, BIRCH, SBAC, ROCK,CU...
原创
2021-09-04 10:52:33
329阅读
聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自 数据挖掘中的聚类分析研究综述 这篇论文。 1
、层次聚类算法
1.1聚合聚类1.1.1相似度依据距离不同:Single-Link
转载
2024-05-20 16:23:18
30阅读
CluStream前言一、CluStream算法的切入点二、CluStream算法核心思想三、CluStream算法的两阶段3.1 在线阶段3.2 离线阶段CluStream算法的缺点总结 前言本文简要介绍了数据流聚类算法中的CluStream算法,从算法的切入点、算法核心思想、算法的两阶段流程以及缺点进行阐述。一、CluStream算法的切入点(1)可以有效的存储在连续数据流中的摘要信息的性质
转载
2024-06-26 09:20:33
115阅读
通用论坛正文爬取这是今年和队友一起参加第五届泰迪杯的赛题论文,虽然最终只获得了一个三等奖。但是在这个过程中和队友也一起学到了不少东西,特此记录。1、 简单介绍赛题的目的,是让参赛者对于任意 BBS 类型的网页,获取其 HTML 文本内容,设计一个智能提取该页面的主贴、所有回帖的算法。2、 前期准备由于之前没有接触过爬虫,我和队友首先了解了目前主流的用于爬虫的语言和框架,最终
常见的聚类算法有:kmeans、fuzzy c-means、EM、hierarchical clustering、graph theoretic、self organizing map参考文章:A Review on Image Segmentation Clustering Algorithms其中LZ对Kmeans和EM比较熟悉,图论和自组织映射相关的资料比较少,主要学习下模糊C均值聚类和层次
转载
2024-05-20 10:31:47
145阅读
分类:分类(classification),对于一个分类员来说,通常需要你告诉它“这个东西被分为某某类”,理想情况下,一个分类员会从它得到的训练集何总进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning(监督学习)。聚类:聚类(clustering),简单的说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现
转载
2023-09-07 21:34:26
73阅读
聚类划分:(1)划分聚类 k-means、k-medoids、k-modes、k-medians、kernel k-means(2)层次聚类 Agglomerative、divisive
原创
2023-07-11 00:08:53
227阅读
聚类方法K-means K-means **分类:**分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选“垃圾”或“不是垃圾”,过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了。这是因为在点选的过程中,其实是给每一条邮件打了一个“标签”,这个标签只有两个值
1. K-Means(K均值)聚类算法步骤:(1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。 (2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。 (3) 计算每一类中中心点作为新的中心点。 (4) 重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随机初始
转载
2024-04-23 18:07:28
0阅读
21/7/15 读书笔记目录21/7/15 读书笔记数据挖掘导论 聚类分析的基本概念数据挖掘导论 K均值二分K均值动态分裂与合并(用后处理)K均值算法的优缺点数据挖掘导论 凝聚的层次聚类方法(凝聚的)层次聚类方法的优缺点数据挖掘导论 DBSCANDBSCAN的优缺点数据挖掘导论 聚类分析的基本概念聚类分析,就是将数据划分为多个具有一定意义的子集(称为簇)。与分类问题不同,聚类分析中“类标签”的概念
1 聚类算法的概念 一种典型的无监督学习算法, 主要用于将相似的样本自动归到一个类别中 计算样本和样本之间的相似性,一般使用欧式距离 聚类算法分类 粗聚类 细聚类 2 聚类算法与分类算法最大的区别 聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。 3 聚类算法在现实中的应用 用户画像,广告 ...
转载
2021-09-26 09:58:00
1286阅读
2评论
肘部法则–Elbow Method我们知道k-means是以最小化样本与质点平方误差作为目标函数,将每个簇的质点与簇内样本点的平方距离误差和称为畸变程度(distortions),那么,对于一个簇,它的畸变程度越低,代表簇内成员越紧密,畸变程度越高,代表簇内结构越松散。 畸变程度会随着类别的增加而降低,但对于有一定区分度的数据,在达到某个临界点时畸变程度会得到极大改善,之后缓慢下降,这个临界点就可
转载
2023-10-30 15:02:22
1003阅读
聚类分析的评价指标也称为:性能度量指标聚类算法聚类后,如何评价聚类结果,如何确定各聚类算法结果的优劣,如何确定聚类算法的参数值,可以通过聚类性能度量指标从一个侧面说明聚类算法和算法参数的选择。聚类性能度量指标分为外部指标和内容指标。外部指标:外部指标,也就是有参考标准的指标,通常也可以称为有监督情况下的一种度量聚类算法和各参数的指标。具体就是聚类算法的聚类结果和已知的(有标签的、人工标准或基于一种
转载
2023-12-27 21:45:13
276阅读
一、聚类1.准备工作(1) 研究目的聚类分析是根据事物本身的特性研究个体分类的方法,聚类分析的原则是同一类别的个体有较大相似性,不同类别的个体差异比较大。(2) 数据类型1)定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据。2)定类:数字无比较意义,比如性别,1代表男,2代表女。PS:SPSSAU会根据数据类型自动选择聚类方法。K-modes聚类:数据类
转载
2023-08-27 18:24:26
243阅读
python实现层次聚类
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计
转载
2023-06-19 14:40:48
179阅读