2.4 案例:实现线性回归学习目标目标
应用op的name参数实现op的名字修改应用variable_scope实现图程序作用域的添加应用scalar或histogram实现张量值的跟踪显示应用merge_all实现张量值的合并应用add_summary实现张量值写入文件应用tf.train.saver实现TensorFlow的模型保存以及加载应用tf.app.flags实现命令行参数添加和
机器学习定义机器学习是一个源于数据的模型的训练过程,最终归纳出一个面向一种性能度量的决策。机器学习步骤提出问题理解数据数据清洗构建模型评估案例: 学习时间与考试分数之间的相关性1,问题:学习时间与考试分数之间的相关性2,理解数据导入数据集#导入包
from collections import OrderedDict
import pandas as pd
#数据集
examDict={
'学习时
转载
2024-09-15 19:14:46
78阅读
背景:波士顿房价数据集包括506个样本,每个样本包括12个特征变量和该地区的平均房价。房价(单价)显然和多个特征变量相关,不是单变量线性回归(一元线性回归)问题;选择多个特征变量来建立线性方程,这就是多变量线性回归(多元线性回归)问题。房价和多个特征变量相关,本案例尝试使用多元线性回归建模 Y=X1*W1+X2*W2+..+X12*W12+b结果可以由不同特征的输
转载
2023-06-12 10:18:26
236阅读
各位“指尖物流信息”的粉丝好!数据已经成为继土地、资本、劳动力、技术之后的一个新型生产要素,如何挖掘数据价值,辅助企业决策是个热点话题。SPSS工具,是经典的统计分析工具 No.1 |实训目标 在实际问题中,影响因变量的因素往往有多个,本次我们将学习如何利用SPSS学习如何使用多元线性回归分析问题。 N
转载
2024-03-23 20:45:24
102阅读
文章目录多元线性回归多元线性回归公式推导举例:波士顿房价取特征值RM为例取所有特证为例 多元线性回归多元线性回归方程:特征值为两个或两个以上。 以下是多元线性回归的模型,我们需要求出theta,使得真实值和预测值的差值最小。多元线性回归公式推导 通过对矩阵进行转换,加一个X0维度,可以求出两个矩阵点乘的最小值问题。 西塔0(theta)代表截距,西塔除第一个以外的元素代表系数。 正规方程解的优点
转载
2024-02-22 02:02:01
42阅读
一、前言 保险公司对个人投保时或根据历史数据生成的模型来计算个人保费,那么本次我们就以这个模型的求解过程为例来实践下多元线性回归。二、数据&简单分析 我们已经获取到了一些数据(模拟数据),文件名为insurance.csv,
转载
2023-12-05 13:47:35
39阅读
一、案例介绍1、目的:利用上市公司当年的公开财务指标预测来年盈利情况最重要的投资人决策依据。2、数据来源:随机抽取深市和沪市2002和2003年的500个上市公司样本预测来年的净资产收益率。3、解释变量包括:资产周转率、当年净资产收益率、债务资本比率、市盈率、应收账款/主营业务收入、主营业务利润、存货/资产总计(反映公司存货状况)、对数资产总计(反映公司规模)二、描述性分析1、各个标量的均值、最小
转载
2024-05-13 09:41:54
40阅读
前言该问题来源于《机器学习:实用案例解析》中的第5章。在书中,已经对该问题给出了一种解决方案,但是我觉得写的还是太简略了一些,没有把考虑问题的整个思路给写出来,所以,在这里给出我的一些想法。问题简述我们的任务就是根据给定的数据集(TOP1000的互联网站数据)建立一个回归模型,然后根据任意给定的一组网站数据,预测出该网站的网页访问量。解决方案这里我们针对的是多元线性回归这个方法,并不是针对预测网页
转载
2024-08-14 17:31:37
66阅读
匹萨的直径与价格的数据%matplotlib inline
import matplotlib.pyplot as plt
def runplt():
plt.figure()
plt.title(u'diameter-cost curver')
plt.xlabel(u'diameter')
plt.ylabel(u'cost')
plt.axis([0,
一、概念回归分析 是一种统计学上分析数据的方法,可以了解两个或多个变量间是否相关、相关 方向与强度,并建立数学模型通过观察特定变量来预测研究者感兴趣的变量。(就是说在不确定自变量和因变量之间函数关系的情况下分析他们之间的表达式) 多元回归分析 在自变量很多(有很多的冗余变量,变量直接不完全独立)时,采用逐步回归分析法,筛选自变量,建立预测效果更好的多元回归模型 二、案例 数学建模都是定量的解决问题
转载
2023-11-16 17:39:22
2阅读
目录简单线性回归1.根据预测目标,确定自变量和因变量2.绘制散点图确定相关性 3.估计模型参数,建立线性回归模型4.对回归模型进行检验5.利用回归模型进行预测多重线性回归1.根据预测目标确定自变量因变量2.绘制散点图,确定回归模型3.估计模型参数,建立线性回归模型4.模型检测5.利用回归模型进行预测简单线性回归一个自变量1.根据预测目标,确定自变量和因变量‘广告费用’作为自变量,‘销售额
转载
2023-11-28 10:10:13
72阅读
前言 本文重在以清晰明了的方式展示利用多元线性回归模型实现预测功能的基本流程。其中包含的知识点如下
变量探索数据读入异常值处理类别变量数值分布情况变量关系探索方差分析style 和 neighborhood 与房价 price 是否有关联可以使用方差分析 插播一条样本量和置信水平 α_level 的注意点(置信水平 α 的选择经验)
样本量α-level≤ 10010
转载
2024-05-09 09:21:56
48阅读
多元线性回归——信用卡客户价值预测一、背景这里以信用卡客户的客户价值为例来解释客户价值预测的具体含义:客户价值预测就是指预测客户在未来一段时间内能带来多少利润,其利润可能来自信用卡的年费、取现手续费、分期手续费、境外交易手续费等。分析出客户价值后,在进行营销、电话接听、催收、产品咨询等各项业务时,就可以针对高价值客户提供区别于普通客户的服务,以进一步挖掘这些高价值客户的价值,并提高他们的忠诚度。二
转载
2024-07-16 14:43:07
286阅读
目录一、线性相关分析分析操作结果及分析二、直线回归分析分析操作结果及分析一、线性相关分析分析:案例:某研究者开展一项研究,拟探讨胆固醇浓度(mmol/L)与久坐时间((mins/day))是否有关。研究者收集了研究对象每天久坐时间(变量time)和胆固醇浓度(变量cholesterol)。观察两个连续变量之间的相关性,可以使用Pearson相关分析。需要考虑5个假设。假设1:两个变量都是连续变量。
转载
2023-11-28 10:41:33
84阅读
TensorFlow案例实现线性回归一、线性回归原理复习根据数据建立回归模型,w1x1+w2x2+…..+b = y,通过真实值与预测值之间建立误差,使用梯度下降优化得到损失最小对应的权重和偏置。最终确定模型的权重和偏置参数。最后可以用这些参数进行预测。二、 案例:实现线性回归的训练1 案例确定假设随机指定100个点,只有一个特征数据本身的分布为 y = 0.8 * x + 0.7&nb
转载
2024-04-19 15:12:58
39阅读
本文是**深度学习入门(deep learning tutorial, DLT)**系列的第二篇文章,主要介绍一下线性神经网络。在介绍深度学习之前,我们需要了解一些神经⽹络训练的基础知识。为了更容易学习,我们将从经典算法——线性神经⽹络开始,首先介绍一元线性回归,逐步扩展到多元线性回归和非线性回归。经典统计学习技术中的线性回归和softmax回归都可以视为线性神经⽹络,这些知识将为本系列教程其他部
前言多元线性回归模型非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会将原理知识穿插于代码段中,争取以不一样的视角来叙述和讲解如何更好的构建和优化多元线性回归模型。主要将分为两个部分:详细原理Python 实战Python实战Python多元线性回归的模型的实战案例有非常多,这里虽然选
转载
2024-05-08 09:55:04
286阅读
【Task01】1.线性回归线性回归是机器学习中最常见的应用,主要用来预测连续值。本次学习的是一个多元线性回归模型,输入多个特征,最后得到一个输出值。学习中的例子是利用线性回归来预测房价,输入的特征包括房屋面积大小和房屋年龄,其是决定房价的重要因素,获取对应的特征后,即可得出线性预测公式如下:price=W_area⋅Area+W_age⋅Age+b 根据其线性回归的公式,实现的方式有两种:(1)
文章目录一、前言二、前期准备工作1.导入数据2.探究关系三、多元线性回归1.训练模型2.计算得分3.可视化预测结果 一、前言今天之所以选择这个主题是因为无意间看到另外一个博主做了这方面的预测,上一篇文章不是刚讲到多元线性回归这个点嘛,然后今天本来打算就这个点进行延伸,写一点相关知识点,然后觉得这个案例挺合适的,就准备拿它来进行扩展了。然而,今天一天都栽在这上面了。事情是这样的,我依照上一篇文章的
转载
2024-06-12 22:36:40
107阅读
1、MATLAB中多元线性回归的例子,2.线性回归,b=regress(y,X) b,bint,r,rint,s=regress(y,X,alpha),输入: y因变量(列向量), X1与自变量组成的矩阵, Alpha显著性水平(缺省时设定为0.05),s: 3个统计量:决定系数R2,F值, F(1,n-2)分布大于 F值的概率p,p时回归模型有效,rcoplot(r,rint),残差及其置信区间
转载
2024-05-20 20:31:16
227阅读