参考:Contour Detection using OpenCV (Python/C++)边缘检测应用:运动检测和分割轮廓:连接物体边界的所有点,通常,轮廓指的是有相同颜色和密度的边界像素寻找轮廓步骤: 1.读取图像转为灰度图2.二值转换,将图像转为黑白,高亮目标物体(canny边缘检测或者二值化阈值)。阈值化把图像中目标的边界转化为白色,所有边界像素有同样灰度值(“same intensity
转载
2024-08-22 14:41:10
89阅读
作者 | 李秋键今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障。当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已。我们知道计算机视觉中关于图像识别有四大类任务:分类-Classification:解决“是什么?”的问题,
转载
2024-02-02 18:19:32
265阅读
数字图像与机器视觉--基于python+opencv识别硬币和细胞数量以及条形码检测一、用奇异值分解(SVD)对一张图片进行特征值提取(降维)处理奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。具体代码如下import numpy as np
imp
转载
2023-08-17 16:14:26
714阅读
介绍OpenCV+Python使用OpenCV构建图像识别算法,识别图片中的米粒个数,并计算米粒的平均面积和长度软件架构模块:OpenCV 4.0.0.21编程语言:Python 3.7.2编译器:PyCharm 2018程序设计思路首先介绍一下程序设计的思路:图像采集(取到图像):可以用摄像头拍摄或者图片直接导入图像预处理:对图像进行灰度化基于灰度的阈值分割:使用局部大津算法进行阈值分割二值化,
转载
2024-02-11 21:18:03
279阅读
OpenCV学习笔记(十六)——CamShift研究 CamShitf算法,即Continuously Apative Mean-Shift算法,基本思想就是对视频图像的多帧进行MeanShift运算,将上一帧结果作为下一帧的初始值,迭代下去。基本步骤为:1.选取关键区域2.计算该区域的颜色概率分布--反向投影图3.用MeanShift算法找到下一帧的特征区域4.标记并重复上述步骤 该算法的关键就
文章目录1.序言2.设计思路以及遇到的问题3.实现过程4.总结&吐槽5.更新源码 1.序言这里主要说一下遇到的问题以及想法,如有问题欢迎大家指正。2.设计思路以及遇到的问题第一步是完成物体(也就是车辆)的检测,这里有两种解决办法,第一种办法是使用opencv的形态学处理,比如背景消除、做帧差、膨胀腐蚀等等,这个办法比较基础,但是要处理好需要调整诸多细节,我的细节调整的不够好,因此实现时会
转载
2024-04-23 16:31:59
101阅读
背景:最近在学习OpenCV,在CV群里有个人问了一个问题,就是个了一幅图片,识别里面的细胞,并且识别出细胞的总个数。原图如下所示:图中白色的细胞。分析:1、首先要定位到细胞,就是确定细胞的位置。这个很容易办到,进行二值化就可以得到清晰的黑白轮廓,然后通过寻找连通域可以圈出图中细胞的位置。2、识别定位到细胞的总个数。这个就有点难办了。难点1:细胞重叠了怎么算。难点2:怎么才能识别为单个细胞,怎么算
转载
2024-02-19 14:43:42
218阅读
大佬绕路,这里菜狗目录环境:效果展示:逻辑原理:介绍原理背景减法移动侦测和阈值设定轮廓提取代码实现执行代码总结 环境:cv2imutilsnumpysklearn效果展示: 逻辑原理:介绍对于计算机视觉爱好者来说,手势识别是一个很酷的项目,因为它涉及一个直观的分步过程,可以很容易地理解,因此你可以在这些概念之上构建更复杂的东西。长期以来,手势识别一直是计算机视觉社区中一个非常有
转载
2024-03-13 09:45:47
48阅读
目录一、步骤1.1.创建级联分类器1.2.载入训练模型1.3.文件判空检查1.4.创建人脸存放的vector1.5.使用detectMultiScale函数1.5.1 函数参数详解1.6.在原图中画出人脸矩形边框二、效果三、代码一、步骤1.1.创建级联分类器//创建级联分类器
CascadeClassifier faceCascade;1.2.载入训练模型//载入训练模型
faceCascad
转载
2024-04-13 11:53:53
200阅读
人脸检测一种主流的方法就是类haar+adaboosting,opencv中也是用的这种方法。这种方法可以推广到刚性物体的检测,前提是要训练好级联分类器(比如说用类haar特征),一旦训练数据弄好了,直接调用opencv中的类CascadeClassifier,用它的几个简单的成员函数就可以完成检测功能。所以说用起来还是很简单的。下面就是用的ope
转载
2024-03-04 06:51:18
188阅读
文章目录前言一、物体识别算法原理概述1、物体识别的概念2、Yolo算法原理概述二、opencv调用darknet物体识别模型(yolov3/yolov4)1、darknet模型的获取2、python调用darknet模型实现物体识别3、LabVIEW调用darknet模型实现物体识别yolo_example.vi4、LabVIEW实现实时摄像头物体识别(yolo_example_camera.v
转载
2023-11-21 19:29:00
138阅读
本文作为自己入门cv的笔记,好多都是整理赛题主办方的,并非原创,只是为了自己整理思路,方便阅读。 赛题相关github学习笔记github.com 赛题名称:零基础入门CV之街道字符识别 零基础入门CV赛事- 街景字符编码识别赛题与数据-天池大赛-阿里云天池tianchi.aliyun.com
封装数据Pytorch 两个处理数据的重要工具类:Dataset
转载
2024-06-20 20:43:42
82阅读
opencv是一个很强大的机器视觉库,利用它我们可以开发出丰富多彩的使用项目。近日,我在研究一个图中物体定位系统。本程序用的是OpenCV2.4.9,附带OpenCV3.0。程序中的原图为我随手拍的一张图片图中有三个物体,都是蓝色的,我首先取原图的蓝色通道变为灰度图灰度图经过中值滤波后可以得到去噪后的图片根据原图的蓝色通道和红色通道的大概取值范围,我们可得到比较满意的二值图为了去掉物体中少量的黑色
转载
2023-11-16 14:41:52
318阅读
OpenCV单目视觉定位(测量)系统The System of Vision Location with Signal CameraAbstract:This passage mainly describes how to locate with signalcamera,which bases on OpenCV library.Key words: OpenCV; Locate;Signalc
转载
2023-12-17 17:38:57
85阅读
一、图像像素的操作访问图像像素值是图像处理的基本操作。OpenCV提供了很多访问方式,比较常用的三种方式: (1) 通过指针访问 (2) 通过迭代器访问 (3) 动态地址计算,通过at()函数实现方法比较: (1)用指针访问像素,速度最快;但在彩色图像处理中,如果要单独对某一个颜色分量处理,则需要通过数学公式计算,不是很直观; (2)推荐
1.windows系统下需要编译安装opencv3.4(注意opencv4.1没有分类器)遇到windows下的opencv编译问题参考:windows7+vs2019编译opencv注意:本机编译的opencv_createsamples.exe程序和opencv_traincascade.exe程序只有通过本机编译才能在本机正常使用。2.然后按照这个教程执行:opencv实时识别指定物体注意:
转载
2023-09-27 19:55:39
415阅读
目标检测技术作为计算机视觉的基础任务之一,在过去几十年取得了显著的进步,尤其近几年,随着深度学习的发展,基于深度神经网络的标准正框目标检测方法迅速取代了传统方法,成为智能安防、家居、出行等领域不可或缺的关键技术,比如人脸检测、人体检测、车辆检测、通用物体检测等。然而,还有一些场景的目标普遍带有任意旋转的多角度并且呈现密集排列,普通正框检测的方法无法满足需求,比如遥感目标检测、货架商品
Opencv识别物体大小在这里,我们通过opencv读取图像来识别我们所需要的物体尺寸,其中经过了一系列形态化处理,包括:灰度化–高斯滤波–边缘检测–膨胀–腐蚀–面积计算–轮廓检测–矩形识别–透视变换,以及各种绘制技巧,对大家学习opencv有很大的帮助。计算识别物体大小的方法其实很简单,如下图:已知白色背景的大小为30mm(目测30mm,没有测量,更注重讲解方法),其所占的像素假设为Z,通过op
转载
2023-10-24 22:02:44
715阅读
本文作者:小嗷 例如,在上面的图片中,你可以看到,汽车的镜子只不过是一个包含了像素点的所有强度值的矩阵。我们如何获取和存储像素值可能根据我们的需要而变化,但最终,计算机世界中的所有图像都可能被简化为数字矩阵和描述矩阵本身的其他信息。OpenCV是一个计算机视觉库,它的主要焦点是处理和操作这些信息。因此,您需要熟悉的第一件事是OpenCV如何存储和处理图像。MatOpenCV自2001年以来就一直存
转载
2024-06-18 21:32:12
133阅读
利用opencv进行移动物体检测
进行运动物体检测就是将动态的前景从静态的背景中分离出来。将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体。在实际情况中由于光照阴影等因素干扰比较大,通过像素直接进行比较往往很容易造成误检。因此有不少算法被开发出来在进行前后景分离的时候对运动和其他因素造成的变动进行区分。opencv中提供了多种背景减除的算法,其中基于高斯混
转载
2023-07-25 23:38:28
186阅读