知识来源于:西安电子科技大学 现代图像分析视频课程 什么是图像图:物体透射或反射光的分布,是客观存在的。像:人对图的印像或认识,是人的感觉。图像:是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;是客观对象的一种可视化表示,它包含了被描述对象的有关信息。图像分类根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。模拟图像:空间坐标和幅度都连续变化的图像数字图像
1.背景介绍图像分类是计算机视觉领域的一个重要研究方向,它涉及到将图像中的对象进行分类和识别。传统的图像分类方法主要包括手工特征提取和机器学习算法,如支持向量机(SVM)、决策树等。然而,这些方法在处理大规模、高维、不规则的图像数据时,存在一些局限性,如需要人工提取特征、算法复杂度高、训练速度慢等。随着深度学习技术的发展,深度学习在图像分类领域取得了显著的进展。深度学习主要利用神经网络进行图像数据
目录S2.1数据驱动方法S2.2K-最近邻算法S2.3线性分类S2.1数据驱动方法图像分类定义图像分类任务是计算机视觉的核心任务。在进行图像分类时,分类器接收一些输入图像,同时也知道图像集合对应的标签集合。分类器的任务就是为输入的图像分配一个固定的分类标签。图像的类别是人类赋予的语义的概念,而对于计算机来说,RGB图像仅仅是3维度的张量,是一个巨大的数字阵列。因此在进行图像分类任务时,会存在语义鸿
实现: 1、掌握图像的基本特征算法,理解图像中目标的几何特征、形状特征的物理与几何意义,并能够将特征的数学语言转换成程序描述。 2、掌握图像的角点特征算法,理解Moravec角点的物理与几何意义,并能够将角点的数学语言转换成程序描述。 3、掌握图像的纹理分析算法,理解对比度、熵、角二阶矩等纹理测度的几何意义,并能够将纹理特征描述的数学语言转换成程序描述。1、掌握图像的基本特征算法,理解图像中目标的
作者:Samuele Mazzanti导读上一篇文章我们说到SHAP值可以用来对黑盒模型进行解释,具备比简单的逻辑回归更好的实际意义,那么SHAP值到底是什么?有什么实际意义?如何计算?揭开神秘的面纱在上次的文章中,我们看到SHAP值可以用来解释机器学习方法的决策。换句话说,我们使用SHAP来揭开黑箱模型的神秘面纱。到目前为止,我们利用了Python的SHAP库,而没有过多考虑它是如何工作的。足够
环境配置:以下实验使用当前最新版本shap:0.39.0$ pip install shap注意xgboost也需
原创 2022-09-16 13:53:48
2413阅读
# 使用SHAP进行模型解释 在机器学习的世界中,模型的可解释性一直是一个重要的话题。尽管深度学习和其他复杂模型在预测方面表现优异,但它们的“黑箱”特性使得理解决策过程变得困难。为了解决这个问题,SHAP(SHapley Additive exPlanations)作为一种有效的模型解释工具被提了出来。本文将为大家介绍SHAP的基本概念、应用及其在Python中的实现。 ## 什么是SHAP
原创 2024-09-06 06:23:24
621阅读
 1. CNNs (Convolutional Neural Networks)我觉得下述过程可以直接用textCNN的这个流程图来表达,清晰明了。所以,直接对着该图看下面的各个步骤会更简单一些。1.1 Why CNNs?为什么要再文本中使用卷积神经网络(CNN)呢?CNN通过卷积的方法,并使用不同大小的卷积核,可以捕捉到句子中不同长度短语的语义信息。1.2 What is Convol
翻译:我Lundberg and Lee(2016)的SHAP(SHapley Additive ExPlanations)是一种解释个体预测的方法。 SHAP基于游戏理论上的最佳Shapley值。SHAP拥有自己的一章,而不是Shapley值的子章节,有两个原因。首先,SHAP的作者提出了KernelSHAP,这是一种受局部代用模型( local surrogate models)启发的、基于核
文章目录【用Shapely解释机器学习模型】1. 用Shapely解释线性模型1.1 传统特征系数计算1.2 部分特征依赖图(partial dependence plots)1.3 瀑布图(waterfall plot)2. 用Shapely解释加法回归模型2.1 基础解释图(局部依赖、依赖关系散点图、瀑布图)2.2 蜂群图(beeswarm)3. 用Shapely解释非加法性质的提升树模型3
转载 2023-12-11 08:25:37
2893阅读
本文续 "SHAP解析模型" 之后,又尝试了一些SHAP新版本的进阶用法,整理并与大家分享.
原创 2022-09-16 14:06:34
2447阅读
引言XGBoost用于建模,SHAP用于模型的可视化解释。 XGBoost建模1 数据准备XGB准备原始数据为一个dataframe,其中一列为输出的结果值,其他列为模型的特征值。输出结果值: 二分类模型:只能为’0’或’1’ 多分类模型:从’0’开始的数字模型特征值: 必须为数值型,如整数、小数;如果为字符,如中文描述,需要先进行转换。字符转数值方法: 法一:直接转稀疏矩阵:# 将col1和co
很早就打算写这篇博客了,最近遇到的问题比较多,所以拖了又拖,今天问题似乎解决了,等着程序运行的时候再来回顾一下Batch Normalization算法。 Batch Normalization是2015年Google研究员在论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Co
按传感器的工作方式分为被动遥感和主动遥感。成像遥感:传感器接收的目标电磁辐射信号可转化为数字或模拟图像。摄像成像类型分为三种:摄像成像(光学/电成像)、扫描成像(光电成像)、微波成像(雷达成像)。非成像遥感:传感器接收的目标电磁信号输出或记录在磁带上而不产生图像。传感器的分辨率:传感器区分自然特征相似或光谱特征相似的相邻地物能力。分为:辐射分辨率、空间分辨率、时间分辨率、光谱分辨率。辐射分辨率:传
1、 Python 变量及其赋值 a = 1 b = a a = a + 1 这里首先将 1 赋值于 a,即 a 指向了 1 这个对象,如下面的流程图所示: 接着 b = a 则表示,让变量 b 也同时指向 1 这个对象 最后执行 a = a + 1。需要注意的是,Python 的数据类型,例如整型(int)、字符串(string)等等,是不可变的。所以,a =
在使用PyTorch进行深度学习模型训练时,SHAP(SHapley Additive exPlanations)解释器能帮助我们理解模型的预测。本篇博文将记录在集成SHAP解释器于PyTorch代码过程中出现的问题,以及最终解决该问题的过程。 ### 用户场景还原 在近期的项目中,我们使用了PyTorch框架构建了一套图像分类模型。该模型需要对输入的图像数据进行预测,并生成可解释的输出,以帮助
原创 7月前
164阅读
作者 | yishun@知乎 导读对神经网络进行可视化分析不管是在学习上还是实际应用上都有很重要的意义,基于此,本文介绍了3种CNN的可视化方法:可视化中间特征图,可视化卷积核,可视化图像中类激活的热力图。每种方法均附有相关代码详解。 引言有一些同学认为深度学习、神经网络什么的就是一个黑盒子,没办法、也不需要分析其内部的工作方式。个人认为这种说法“谬之千里”。首先,站在自动特征
 机器学习和统计很难隔离,这里排除传统统计方法是想知道现代机器学习方法在量化金融的应用,如有困难请忽略此要求。Weicong Liu答:尝试回答一下这个问题,也算是对自己阅读的一些论文的总结,顺带谈下一点自己的思考。前一阵子被吐槽说中英夹杂,也不是为了装逼,因为其实翻译过来,意思反而有了偏差。如果你去搜索早期的神经网络、SVM的相关论文,会发现不少是做股票预测的。原因很简单,因为似乎我们
# Python使用SHAP解释单个 作为一名经验丰富的开发者,我将教会你如何使用SHAP(SHapley Additive exPlanations)来解释单个Python模型的结果。下面是整个过程的步骤。 | 步骤 | 描述 | |------|------| | 1. | 导入必要的库 | | 2. | 加载数据 | | 3. | 训练模型 | | 4. | 生成解释 |
原创 2024-01-15 10:41:23
226阅读
1.SHAP介绍SHAP(SHapley Additive exPlanations),是Python开发的一个“模型解释”包,它可以解释任何机器学习模型的输出。所有的特征都被视为“贡献者”。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。SHAP值从预测中把每一个特征的影响分解出来,可应用于如下场景中:模型认为银行不应该给某人放贷,但是法律上需要银
  • 1
  • 2
  • 3
  • 4
  • 5