一、引言(INTRODUCTION) 图像校正主要是指辐射校正和几何校正。辐射校正包括传感器的辐射校正、大气校正、照度校正遗迹条纹和斑点的判定和消除。几何校正就是校正成像过程中造成的各种几何畸变,包括几何粗校正和几何精校正。几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几
1、 图像导入 在erdas的Import/Export模块中,分别导入TM图像的第1、2、3、4、5、7波段,具体操作步骤为 ① 点击import模块,打开对话框 ② 选择type类型为TIFF ③ media为file; ④ 然后选择输入、输出文件名路径和文件名 ⑤ 分别对123457波段进行导入; ⑥ 在此之前可以选择session->preference,选择输入、输出主目录。2、
转载
2023-08-13 16:22:15
686阅读
文章目录1.查看图像的空间分布特征(一)生成灰度图像(二)生成假彩色图像(三)连接不同视图的影像2.查看图像的像元灰度值3.统计并查看图像直方图4.计算NDVI(一)采用波段运算器计算NDVI(二)采用植被指数计算器计算NDVI5.NDVI计算结果检验(一)对结果图像的空间分布特征进行检验(二)对结果图像进行统计特征的检验6.浏览图像的空间分布及数值统计特征(一)查看空间分布特征(二)查看数值统
转载
2023-08-07 11:36:40
64阅读
一些基于python+gdal整理的小工具#!/usr/bin/env python
# coding: utf-8
from osgeo import gdal
import os
import glob
import numpy as np
import math
def read_img( filename):
'''
读取影像为数组并返回信息
——————
本章节主要参考《python地理空间分析指南》第六章。文章中的所有操作都可以在ENVI中完成,这里只提供一个图像处理的思路。一、图像波段变换波段变换最常用的地方就是进行图像显示,例如使用假彩色图像以凸显植被信息。图像波段变换即将图像波段的组合顺序重新排列并显示的方法,主要使用GDAL库。下面以一个例子进行实验,首先给出数据的下载地址:http://git.io/vqs41打开原图可以看到,植被明显
转载
2023-11-04 22:12:29
225阅读
1评论
基于创新的ENVI企业级服务器平台ENVI Services Engine可以构建在线的遥感图像处理和分析平台。可以利用一个Web浏览器完成专业的遥感影像处理。(1)如下图为一个在线的遥感图像处理和分析系统的Web客户端,使用一个账号登陆。图:使用一个账户登录(2)选择高分一号PMS影像类型和数据目录。图:设置处理参数(3)单击提交按钮,服务器开始处理。客户端可以随时监控处
转载
2023-08-01 23:51:10
177阅读
# 如何使用Python处理遥感影像
## 简介
在本文中,我将向你介绍如何使用Python来处理遥感影像。作为一名经验丰富的开发者,我将指导你完成整个流程,并提供每一步所需的代码示例。
## 流程概述
下表展示了处理遥感影像的整个流程:
| 步骤 | 描述 |
| ---- | ---- |
| 1 | 读取遥感影像数据 |
| 2 | 预处理数据 |
| 3 | 进行影像分类 |
| 4
# 遥感影像中的去云处理:Python实现
遥感影像在地理信息系统、农业监测、环境保护等领域发挥着重要作用。然而,云层的存在会严重影响影像的质量与分析结果。因此,去除云层,在保留有效信息的同时提升数据的可用性,显得尤为重要。本文将介绍如何使用Python进行遥感影像的去云处理,并配合示例代码和图示来说明相关过程。
## 去云处理的基本思路
去云处理的方式主要包括基于阈值的去云、插值法和使用深
图像预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的流程在各个行业、不同数据中有点差异,而且注重点也各有不同。本小节包括以下内容:数据预处理一般流程介绍
数据预处理的主要步骤介绍
1 数据预处理一般流程数据预处理的过程包括几何校正(地理定位、几何精校正、图像配准、正射
转载
2023-09-29 11:24:40
0阅读
前言如果将图像直接输入到深度学习网络中,会导致内存溢出,因此需要将图像裁剪成图像块输入到网络中。裁剪方法包括规则格网裁剪和滑动窗口裁剪以及随机裁剪。 规则格网裁剪 滑动窗口裁剪 随机裁剪 正文规则格网裁剪属于重复率为0的滑动窗口裁剪,滑动窗口裁剪代码为: import os
import gdal
import num
转载
2023-08-24 16:32:27
182阅读
引入此次内容是遥感影像的几何校正,我们知道在遥感成像的过程其,传感器生成的图像像元相对于地面目标物的实际位置会发生挤压、拉伸、扭曲和偏移等几何畸变问题,而这些几何畸变问题会给基于遥感图像的定量分析、变化检测,图像融合、地图测量或更新等处理带来误差,所以我们有必要对遥感图像进行几何校正,而在校正过程中的关键问题就是控制点的采集,控制点的采集常用的有三种方式,这三种方式中又常用的通过读取地形图的坐标信
# 遥感大影像处理的Python入门指南
遥感大影像处理通常涉及获取、预处理和分析影像数据。对于刚入行的小白来说,学习如何在Python中实现遥感大影像处理可能感觉有些困难,但只要掌握了基本流程和常用库,成功是指日可待的。本文将为你提供一个完整的工作流程和对应的代码示例。
## 处理流程
处理遥感影像一般分为以下几个步骤:
| 步骤 | 描述
# 遥感影像预处理 python
## 什么是遥感影像预处理
遥感影像预处理是指在对遥感影像进行后续分析前,对原始影像进行一系列的处理和调整,以提高影像质量,减少噪声,使得影像更适合进行后续分析。预处理包括去噪、增强、变换、裁剪、配准等步骤,能够有效提高影像的质量和准确性。
## 遥感影像预处理的重要性
遥感影像作为从空间获取信息的重要手段,广泛应用于地理信息系统、农业、林业、城市规划等领
# Python处理GF遥感影像
遥感技术在地理信息系统、环境监测和资源管理等领域中扮演着重要角色。GF(高分辨率对地观测卫星)遥感影像提供了丰富的信息,可以被用于土地利用变化监测、城市发展分析等。本文将介绍如何使用Python处理GF遥感影像,并附上代码示例进行演示。
## 安装必要的库
在处理GF遥感影像之前,我们需要安装一些Python库,比如 `rasterio`、`numpy` 和
Python遥感影像定标 Python遥感tiff影像定标 作为一个遥感专业的学生,通常处理影像的第一步就是就是对遥感影像进行定标,使像元尽可能真实的反映地表情况,初学者我们通常是使用软件进行定标,随着学习的深入,我们会逐步地接触多种语言,如IDL、Python等。这篇博客的主要内容是使用python进行遥感tiff影像的定标,IDL语言进行定标语言类似。 文章目录Python遥感影像定标辐射
转载
2023-08-18 20:52:52
313阅读
一、流程 图像预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的流程在各个行业、不同数据中有点差异,而且注重点也各有不同。 数据预处理的过程包括几何校正(地理定位、几何精校正、图像配准、正射校正等)、图像融合、图像镶嵌、图像裁剪、去云及阴影处理和大气校正等几个环节,如下图是中等分辨率的全色和多光谱图像预处理流程图示。在几何校正
遥感影像一般具有多个波段,比较常见的影像一般是4波段多光谱影像,比如高分一号、高分二号、资源三号等。这些影像数据一般体量较大,有的几百兆,有的多达几十G,格式一般是16位无符号整型,一般看图软件无法打开显示,需要ArcGIS、ENVI等专业的软件进行查看,有时候很不方便。这篇博客就简单的介绍一下,如何利用Python对遥感影像进行显示,需要用到的库为GDAL和Opencv。正文Python中,一般
转载
2023-06-26 09:53:07
868阅读
目录背景拼接步骤1.新建并保存项目2.添加照片3.对齐照片4.添加标记(Markers)5.添加地面控制点6.建立批处理任务7.使用批处理文件进行批处理8.导出DEM9.导出DOM背景本文介绍使用地面控制点(GCPs)拼接无人机RGB影像,生成DEM、DOM。数据获取情况:无人机:DJI M600 PRO相机:Sony A7RM2(40mm),不具备GPS记录功能场景:农田旁向航向重叠率:≥75%
工具:ContextCapture,Globe Mapper 方法/步骤: 1、新建项目,导入影像,提交空三运算 在ContextCapture中新建项目,添加相关影像或视频和其他相关资源,资源,提交空三运算。 2、 新建重建项目 空三运算完成后,新建重建项目,并进行如下设置 空间参考设置: 处理设
**Python空间数据处理: GDAL读写遥感图像**添加链接描述 GDAL是空间数据处理的开源包,支持多种数据格式的读写。遥感图像是一种带大地坐标的栅格数据,遥感图像的栅格模型包含以下两部分的内容:栅格矩阵:由正方形或者矩形栅格点组成,每个栅格点所对应的数值为该点的像元值,在遥感图像中用于表示地物属性值;遥感图像有单波段与多波段,波段表示地物属性的种类,每个波段表示地物一种属性。大地坐标:空间