作者:chen_h (一)机器学习中的集成学习入门(二)bagging 方法(三)使用Python进行交易的随机森林算法(四)Python中随机森林的实现与解释通过从单个决策树构建来使用和理解随机森林幸运的是,对于像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法。这很容易,我们通常不需要任何关于模型是如何工作的知识来使用它。虽然不需要知道所有细节,但了解机器学习
转载
2023-09-10 21:03:41
17阅读
======================================================================= Machine Learning notebook Python机器学习基础教程(introduction to Machine Learning with Python)https://github.com/amueller/
目录1 集成模型简介1.1 Bagging算法简介1.2 Boosting算法简介2 随机森林模型基本原理3 使用sklearn实现随机森林模型4 案例:股票涨跌预测模型4.1 股票衍生变量生成4.1.1 获取股票基本数据4.1.2 生成简单衍生变量4.1.3 生成移动平均线指标MA值4.1.4 用TA-Lib库生成相
转载
2023-08-22 22:29:26
20阅读
一、什么是随机森林? 作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园
转载
2023-08-23 16:47:33
106阅读
n_estimators:森林中决策树的数量。默认100 表示这是森林中树木的数量,即基基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长
转载
2023-11-20 10:14:12
102阅读
随机森林实现及调参一、R语言方法一、手动调参方法二、网格调参二、python 注:本博客数据仍采用决策树调参的泰坦尼克号数据,前奏(数据预处理)请参考☞ 决策树R&Python调参对比☜ 一、R语言方法一、手动调参PS.仅使用常规包:randomForest和循环编写。 1-建模set.seed(6)
rf <- randomForest(Survived~.,data=tra
转载
2023-08-25 13:53:21
198阅读
1、什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归); Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成。它的特点在“随机采样”。 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回。也就是说,之前采集到的样本在放回后有可能继续被采集到。对
转载
2024-04-21 19:58:48
39阅读
作者:郑援镜烨
空气质量指数(AQI)是衡量空气质量好坏的重要指数,它是依据空气中污染物浓度的高低来判断的。但是因为空气污染本身是一个较为复杂的现象,固定和流动污染源的人为污染物排放大小是影响空气质量的最主要因素之一。其中包括车辆、船舶、飞机的尾气、工业企业生产排放、居民生活和取暖、垃圾焚烧等。城市的发展密度、地形地貌和气象等也是影响空气质量的重要因素。·研究目标:搜集相关数据,运用机器学习对
转载
2024-05-10 15:58:21
43阅读
目录1、集成算法概述2、Sklearn中RandomForestClassifier重要参数详解3、Sklearn中RandomForestRegressor重要参数详解4、附录5、总结1、集成算法概述:集成算法的目标是多个评估器建模的结果,汇总后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现。多个模型集成成为的模型叫集成评估器,单个模型叫基评估器。通常说有三种集成算法:装袋法(Bag
转载
2023-08-12 10:35:48
192阅读
说明:这是一个机器学习实战项目(附带数据+代码),如需数据+完整代码可以直接到文章最后获取。1.项目背景 高质量的产品不仅能很好地满足顾客对产品使用功能的需要,获得良好的使用体验,提升企业形象和商誉,同时能为企业减少售后维修成本,增加利润。燃气灶市场已成为继家电市场之后各大电器公司竞争的新战场。某电器公司的燃气灶产品销售额一直在国内处于领先地位,把产品质量视
转载
2023-08-28 16:32:36
761阅读
机器学习概念Bagging算法Boosting算法随机森林模型的基本原理随机森林模型的代码实现 大数据分析与机器学习 概念 集成学习模型:将多个模型组合在一起,从而产生更强大的模型 随机森林模型:非常典型的集成学习模型 集成模型简介: 集成学习模型使用一系列弱学习器(也称为基础模型或基模型)进行学习,并将各个弱学习器的结果进行整合,从而获得比单个学习器更好的学习效果。 集成学习模型的常见算
转载
2023-09-19 04:55:51
219阅读
随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”。 01随机森林的随机性体现在哪几个方面? 1.1数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的
转载
2023-11-21 20:37:12
145阅读
集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。随机森林实际上就是决策树的集成,由多棵树组合而成,回归树的集合就是随机森林回归,分类树的集合就是随机森林分类。重要参数(与决策树差不多) 参数含义criterion不纯度的衡量指标,有基尼系数和信息熵两种选择 max_depth 树的
转载
2023-06-29 16:35:32
171阅读
Table of Contents1 随机森林概述1.1 个体学习器1.2 集成策略2 随机森林的一些相关问题2.1 偏差(Bias)与方差(Variance)2.2 RF通过降低方差提高预测准确性2.3 Bootstrap(自助采样)2.4&n
转载
2024-05-08 09:06:38
40阅读
1.随机森林定义 随机森林是一种多功能的机器学习算法,能够执行回归和分类的任务。同时,它也是一种数据降维手段,在处理缺失值、异常值以及其他数据探索等方面,取得了不错的成效。另外,它还担任了集成学习中的重要方法,在将几个低效模型整合为一个高效模型时大显身手。在随机森林中,会生成很多的决策树,当在基于某些属性对一个新的对象进行分类判别时,随机森林中的每一棵树都会给出自己的分类选择,并由此进行“投票
转载
2023-07-04 20:59:08
217阅读
随机森林随机森林是一种灵活的、便于使用的机器学习算法,即使没有超参数调整,大多数情况下也会带来好的结果。它可以用来进行分类和回归任务。通过本文,你将会学习到随机森林算法是如何解决分类和回归问题的。为了理解什么是随机森林算法,首先要熟悉决策树。决策树往往会产生过拟合问题,尤其会发生在存在整组数据的决策树上。有时决策树仿佛变得只会记忆数据了。下面是一些过拟合的决策树的典型例子,既有分类数据,也有连续数
转载
2023-08-22 15:44:46
130阅读
1. 随机森林RandomForestClassifier官方网址:https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.htmlGitHub文档地址:https://github.com/gao7025/random_forest1.1 原理解释从给定的训练集通过多次随机
转载
2023-09-13 12:59:58
185阅读
在做项目时要用随机森林,查资料发现大多数都是用随机森林做分类,很少见到有回归的。虽然分类随机森林和回归随机森林代码实现相差不大,但是对于新手小白来说,如果有比较完整的代码直接学习可以节省很多时间,这是我写这篇文章的原因。随机森林我就不介绍了,其他地方介绍一搜一大堆。这篇文章关注的是如何用python实现回归随机森林。分为随机森林构建和随机森林预测两部分  
转载
2023-08-20 21:02:28
10阅读
本文详细介绍基于Python的随机森林(Random Forest)回归算法代码与模型超参数(包括决策树个数与最大深度、最小分离样本数、最小叶子节点样本数、最大分离特征数等等)自动优化代码。 本文是在上一篇博客1:基于Python的随机森林(RF)回归与变量重要性影响程度分析()的基础上完成的,因此本次仅对随机森林模型超参数自动择优部分的代码加以详细解释;而数据准备、模型建立、精度评定等其他
转载
2023-09-29 10:48:34
153阅读
Python教程作者| 战争热诚 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”。 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和
转载
2023-08-03 10:17:22
113阅读