PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些。这一课内容不多,作为一个知识储备。在后续的内容中,有用PyTorch来获取EfficientNet预训练模型以及一个猫狗给分类的实战任务教学。加减乘除就不多说了,+-*/1 矩阵与标量这个是矩阵(张量)每一个元素与标量进行操作。import torch
a = torch.tensor([1,2])
print(a+1)
>&
转载
2023-10-20 11:33:03
65阅读
1、基础张量维度:维度个数和维度大小;.ndim可查看维度个数,.shape可查看维度大小。如下代码,张量a:维度个数为2,是一个2维张量;维度大小为[2,3],即第0维的维度大小为2,第1维为3。>>> a=torch.arange(8).reshape(2,4)
>>> a
tensor([[0, 1, 2, 3],
[4, 5, 6, 7]
转载
2023-09-18 00:03:20
640阅读
每门语言都少不了加减乘除等数学运算,Pytorch 作为一个开源的机器学习库,除了这些基本的数学运算,还涉及到矩阵运算、三角函数、傅立叶变换等等。对于我们来说,先从最简单的、常用的数学运算入手,主要是学习其 api 的使用,尤其是对于一些复杂的计算。有时间的话,去了解一下其背后的数学原理会更好。1. 加减乘除加法:torch.add(input, other, * ,&nbs
转载
2023-10-09 15:42:58
88阅读
Tensor 概念张量的数学概念:张量是一个多维数组,它是标量、向量、矩阵的高位扩展张量在pytorch中的概念:tensor之前是和pytorch早期版本中的variable一起使用的。variable是torch.autograd的数据类型,主要用于封装tensor,进行自动求导data:被包装的Tensorgrad:data的梯度grad_fn:创建Tensor的function,是自动求导
4、张量 张量是pytroch中最重要的数据类型,神经网络中操作的数据都是张量。输入的图片是一个张量,中间的隐藏层也是张量,最后输出的结果也是张量。 所以懂得张量的基本操作就成了pytroch的基本功。 张量是一个多维数组,维度可以从0到n 如果维度为0那么就是一个常数,如果维度为1那么就是一个向量,如果维度为2那么就是一个矩阵,如果维度为3就是一个立方体,如果维度为4 …4.0 张量的介绍 Py
白板推导系列Pytorch-支持向量机(SVM)支持向量机的代码实现主要是SMO算法的实现,我参考了下面这篇博客该博客中使用numpy实现的svm,我对numpy版本做了一点修改,并且使用pytorch的API写了一个新版本,但除了函数名不同基本一致,只是numpy版本的收敛速度比pytorch要快很多。另外我调用了sklearn中的svm,速度都远超这两个实现pytorch版本导入所需的包imp
转载
2023-08-11 10:01:16
74阅读
系列文章目录第一章 人工智能发展大事件第二章 PyTorch基础 文章目录系列文章目录一、Tensor(张量)基本概念二、Tensor(张量)统计学方法三、Tensor(张量)基本操作总结 一、Tensor(张量)基本概念理解标量、向量、矩阵、张量 简单来说,张量是一个更加泛化的概念,包含了标量(0维张量)、向量
三维向量的点积(Dot Product)
点乘比较简单,是相应元素的乘积的和: V1( x1, y1, z1)·V2(x2, y2, z2) = x1*x2 + y1*y2 + z1*z2;注意结果不是一个向量,而是一个标量(Scalar)。点乘有什么用呢,我们有: A·B = |A||B|Cos(θ)θ是向量A和向量B见夹角。这里|A|我们称
torch.bmm()强制规定维度和大小相同torch.matmul()没有强制规定维度和大小,可以用利用广播机制进行不同维度的相乘操作当进行操作的两个tensor都是3D时,两者等同。torch.bmm()用法:torch.bmm(input, mat2, out=None) → Tensor torch.bmm()是tensor中的一个相乘操作,类似于矩
TensorFlow - 张量
https://tensorflow.google.cn/guide/tensorsTensorFlow 指南 - TensorFlow 工作原理https://tensorflow.google.cn/guide正如名称所示,TensorFlow 这一框架定义和运行涉及张量的计算。张量是对矢量和矩阵向潜在的更高维度的泛化。TensorFlow 在
神经网络学到的所有变换都可以简化为数值数据张量上的一些张量计算。keras.layers.Dense(512, activation='relu')这个层可以理解为一个函数,输入一个 2D 张量,返回另一个 2D 张量,即输入张量的新表示。具体而言,这个函数如下所示(其中 W 是一个 2D 张量,b 是一个向量,二者都是该层的属性)。output = relu(dot(w,input)+b)我们将
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载
2023-09-14 22:03:42
142阅读
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
转载
2023-08-30 10:36:22
129阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
转载
2023-10-26 11:26:48
94阅读
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定
x = torch.empty(5, 3)
print(x
转载
2023-09-21 06:25:21
270阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载
2023-09-27 22:27:49
218阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载
2023-08-21 09:16:40
109阅读
Pytorch中数据-张量目标知道张量和Pytorch中的张量知道pytorch中如何创建张量知道pytorch中tensor的重要属性知道pytorch中tensor的如何修改知道pytorch中的cuda tensor掌握pytorch中tensor的常用数学运算1. 张量Tensor张量是一个统称,其中包含很多类型:0阶张量:标量、常数,0-D Tensor1阶张量:向量,1-D Tenso
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维) &nbs
转载
2023-07-28 19:31:33
144阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。
在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不