PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些。这一课内容不多,作为一个知识储备。在后续的内容中,有用PyTorch来获取EfficientNet预训练模型以及一个猫狗给分类的实战任务教学。加减乘除就不多说了,+-*/1 矩阵与标量这个是矩阵(张量)每一个元素与标量进行操作。import torch a = torch.tensor([1,2]) print(a+1) >&
# 使用 PyTorch 显示图像的基本方法 在深度学习和计算机视觉领域,图像是最重要的输入类型之一。为了解析和展示这些图像PyTorch 提供了一些非常方便的工具。本文将简单介绍如何使用 PyTorch 张量显示图像,并配有相应的代码示例。 ## 1. PyTorch 简介 PyTorch 是一个开源的深度学习框架,因其动态计算图和简便易用的特点而受到广泛欢迎。通过 PyTorch,用户
原创 9月前
224阅读
PyTorch入门实战教程笔记(五):基础张量操作2包括:索引与切片和 维度变换索引和切片:使用函数torch.rand()来创建一个数据,比如a = torch.rand(4,3,28,28),即为Batch size为4(即4张图片)的28×28的RGB图像,这也是CNN中最常用的,那么a[0]指的就是索引的第一张图片,a[0,1]指的是第一张图片第一个通道(如:R)的数据,示例如下图:   
1、数据增强(data augmentation)数据增强又称为数据增广,数据扩增,它是对训练集进行变换,使训练集更丰富,从而让模型更具泛化能力。在中学阶段就已经接触过数据增强的概念,看一个例子,高中的五年高考三年模拟,假设学生是一个模型,五年高考真题是一个训练集,当年高考题是一个验证集,用来验证学习模型的学习能力和效果。对于这个例子怎么做数据增强呢?就是对历年的高考题的知识点进行分析和提炼,设计
转载 2023-08-28 11:13:02
0阅读
数据增强对深度神经网络的训练来说是非常重要的,尤其是在数据量较小的情况下能起到扩充数据的效果。本文总结了pytorch中使用torchvision提供的transform模块,进行数据增强常用的7种方式,并将每种操作封装为函数,便于CV(Ctrl)程序员使用,共包含以下8个部分(如果觉得有用请点个赞呀!!!):(1)获取PIL.Image类型图片(准备数据)(2)中心裁剪(3)随机裁
计算机视觉任务中,对图像的变换(Image Transform)往往是必不可少的操作,例如在迁移学习中,需要对图像尺寸进行变换以使用预训练网络的输入层,又如对数据进行增强以丰富训练数据。作为深度学习领域的主流框架,pytorch中提供了丰富的图像变换API。本文将对pytorch中torchvision.transforms提供的丰富多样的图像变换API进行整理介绍。 为方便下文展示各种图像
张量的创建张量张量的定义Tensor与Variable张量的创建1.直接创建torch.tensor()torch.from_numpy(ndarray)2.依据数值创建torch.zeros()torch.zeros_like()torch.ones()torch.ones_like()torch.full()torch.full_like()torch.arange()torch.linsp
转载 2023-10-14 11:02:01
85阅读
张量是什么?张量是一个多维数组,它是标量、向量、矩阵的高维拓展。Tensor 与 Variablevariable 是 torch.autograd 中的数据类型,主要用于封装 Tensor ,进行自动求导data:被包装的 Tensorgrad:data 的梯度grad_fn:创建 Tensor 的 Function,是自动求导的关键requires_grad:指示是否需要梯度is_leaf:指
转载 2024-06-28 18:08:17
67阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载 2023-08-21 09:16:40
162阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载 2023-09-27 22:27:49
298阅读
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定 x = torch.empty(5, 3) print(x
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载 2023-09-14 22:03:42
157阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维)           &nbs
转载 2023-07-28 19:31:33
205阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。    在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载 2024-01-23 17:02:49
358阅读
PyTorch是一个基于Python的科学计算库,它主要针对两类人群:NumPy的替代品,可以利用GPU的性能进行计算;深度学习研究人员,提供了最大的灵活性和速度,以深度学习为核心。在PyTorch中,张量(Tensor)是最基本的数据结构之一,可以看作是一个多维数组。张量与NumPy中的数组非常类似,但是张量可以在GPU上运行,这使得它们比NumPy数组更快。下面是一些关于张量的基本使用方法:创
原创 2023-05-05 20:08:35
105阅读
# PyTorch 张量入门指南 ## 引言 PyTorch 是一个基于 Python 的科学计算库,它广泛应用于深度学习领域。在 PyTorch 中,张量(tensor)是最基本的数据结构,用于存储和操作多维数组。本文将向你介绍如何在 PyTorch 中使用张量,帮助你快速入门。 ## 张量概述 在进行深入学习之前,我们首先需要了解什么是张量张量是一种多维数组,与 Numpy 中的数组类似
原创 2023-12-15 11:14:39
47阅读
Pytorch教程之张量说明:本文内容全部是搬运的,仅仅是记录一下,更多详细内容可以参考pytorch教程。1、简介Tensor中文翻译张量,是一个词不达意的名字。张量在不同学科中有不同的意义,在深度学习中张量表示的是一个多维数组,它是标量、向量、矩阵的拓展。标量是零维张量,向量是一维张量,矩阵是二维张量。 tensor之于pytorch等同于ndarray之于numpy,它是pytorch中最核
转载 2023-10-02 08:51:40
87阅读
pytorch学习笔记-张量(Tensor)操作张量是深度学习中必不可少的内容,虽然十分基础但是在整个深度学习中每个地方都会涉及到,下面从创建、运算、广播以及转换等方面记录一下学习心得,学习过程中参考了动手学深度学习(pytorch版本)和pytorch官方文档。 导入包:import torch创建Tensortorch.empty(5, 3) #创建一个5*3的张量,并不进行初始化 torch
  • 1
  • 2
  • 3
  • 4
  • 5