比特流是一个常用词汇,用于描述包含FPGA完整内部配置状态的文件,包括布线、逻辑资源和IO设置。大多数现代FPGA都是基于SRAM的,包括Xilinx Spartan和Virtex系列。在FPGA上电或随后的FPGA重新配置期间,比特流从外部诸如闪存这样的非易失性存储器中读取,通过FPGA配置控制器的处理,加载到内部的配置SRAM中。在有些情况下,设计者需要很好地了解FPGA比特流的内部结构。例如
现在我们来毕竟方案3和4。 首先他们的共同点是卷积核内部分并行,因此我们从这里开始分析,明确卷积核内部如何部分并行。 首先来看卷积的计算公式:
目录:简介框架资源分配(1)资源分配(2)数据量化(1)数据量化(2)数据读写卷积模块池化、全连接与输出我发现点下面的链接会跳到一个不知道是谁的下面需要下载,这个很迷惑,麻烦自行复制下面的链接。 Github:https://github.com/MasLiang/CNN-On-FPGA 那个不知道是谁的链接: 没有下载不让举报,有办法的朋友麻烦举报一下上一节我们介绍了如何对一个离线模
文章目录前言SGD(随机梯度下降法)MomentumAdaGradRMSpropAdamMNIST手写数据集四种方法对比总结参考 前言神经网络的学习的目的是找到使损失函数的值尽可能小的参数。这是寻找最优参数的问题,解决这个问题的过程称为最优化(optimization)。遗憾的是,神经网络的最优化问题非常难。这是因为参数空间非常复杂,无法轻易找到最优解(无法使用那种通过解数学式一下子就求得最小值
FPGA实现BP神经网络正向传播过程本篇文章不是用FPGA去加速神经网络的训练过程,个人以为训练过程在GPU上进行已经可以达到一个比较理想的速度了,但是把训练完成的模型嵌入到FPGA里还是有不少工作可以做的。这里就一个简单的两输入六个输出的三层BP神经网络训练好的模型为例,将训练完成的模型用FPGA实现。整个过程主要有三个问题:①神经网络中大量乘法器消耗FPGA资源的问题;②神经网络中的权值参数为
转载 2023-08-12 12:35:54
165阅读
编辑丨阿chai带你学AI今天给大家介绍一下FPGA部署深度学习的算法模型的方法以及平台。希望通过介绍,算法工程师在FPGA的落地上能“稍微”缓和一些,小白不再那么迷茫。阿chai最近在肝一个开源的项目,等忙完了会给大家出几期FPGA上从零部署的教程,包括一些底层的开发、模型的量化推理等等,因为涉及的东西太多了,所以得分开写。FPGA与“迷宫”深度学习这里就不多介绍了,我们接下来介绍一下FPGA
        前面讲解了C程序的基本情况,下面就是重中之重 —— 数据如何使用。也就是群中分享的文件。首先看两个文件夹       dat_save_img5    --->  此文件夹中采用MNIST数据集里第五张图的数据。方便在matlab中导入。    &
关注、星标公众号,直达精彩内容来源:网路素材对于新手学习FPGA设计,要从基础开始做,基础牢,才有成为高手的可能。对于初学者,有以下几步是必须要走的。第一步学习了解FPGA结构,FPGA到底是什么东西,芯片里面有什么,不要开始就拿个开发板照着别人的东西去编程。很多开发板的程序写的很烂,笔者也做过一段时间的开发板设计。笔者觉得很大程度上,开发板在误人子弟。不过原厂提供的正品开发板,代码很优秀的,
目录:简介框架资源分配(1)资源分配(2)数据量化(1)数据量化(2)数据读写卷积模块池化、全连接与输出事先声明,仅用于记录和讨论,有任何问题欢迎批评指正,只是觉得菜的大佬们请绕路,就不用在这里说大实话了,因为本身就是一个粗糙的demo。ISE的v文件在github,由于大家想要vivado工程,我就做了一个,有点大,传到了百度网盘。 提起把项目代码讲解一下的念头主要是源于最近一个同学开始转行做这
               上一遍写到了,公式,或者是一下关于BP神经网络的内容的语言描述。下面就要开始,进行深度点的分析。           &
专注于终端人工智能解决方案的新创公司耐能(Kneron)今日宣布,完成由李嘉诚旗下维港投资领投的1800万美元A1轮融资。维港投资一直参与具创新力和颠覆性的全球科技项目之早期投资,包括DeepMind、Siri、Improbable、VIV、Skype、Facebook和Zoom等。Kneron的核心技术,是研发出一种高效率、低耗电的神经网络芯片(Neural Processing Unit,NP
对于 Batch Normalization 的知识最原始的出处来源于《Batch Normalization:Accelerating Deep Network Trainning by Reducing Internal Covariate Shift》这篇论文。文章开始前,先讲一下 Batch Normalization 有什么好处。加速神经网络的训练过程。减少对 Dropout 的依赖可以
一、引言1.1 轻量化神经网络的硬件部署需求神经网络模型不断革新发展,经历了从浅层神经网络到深度神经网络的重要变革。在追求更好精度的同时,深度神经网络模型层数和参数数量也在不断增加,从而对硬件的计算能力、内存带宽及数据存储等的要求也越来越高. 因此,计算能力强、可并行加速、数据吞吐高的高性能硬件平台对于模型训练和产业应用来说显得尤为重要。轻量级神经网络是在保证模型的精度下对神经网络结构进行压缩、量
目录:1. 简介2. 框架3. 资源分配(1)4. 资源分配(2)5. 数据量化(1)6. 数据量化(2)7. 数据读写8. 卷积模块9. 池化、全连接与输出我发现点下面的链接会跳到一个不知道是谁的CSDN下面需要付费下载,这个很迷惑,麻烦自行复制下面的链接。 Github:https://github.com/MasLiang/CNN-On-FPGA 那个不知道是谁的链接: 没有下载不让举报,有
转载 2023-08-09 20:26:26
230阅读
网上有很多关于tensorflow lite在安卓端部署的教程,但是大多只讲如何把训练好的模型部署到安卓端,不讲如何训练,而实际上在部署的时候,需要知道训练模型时预处理的细节,这就导致了自己训练的模型在部署到安卓端的时候出现各种问题。因此,本文会记录从PC端训练、导出到安卓端部署的各种细节。欢迎大家讨论、指教。PC端系统:Ubuntu14tensorflow版本:tensroflow1.14安卓版
来个小例子讲述一下,过程。               apf 是0.9 , af是0.1       为什么用0.9,用0.1   主要是因为1和0.在计算过程中,会有计算隐患(可能遇到0
随着半导体和嵌入式系统应用技术的高速发展,FPGA应用于众多行业,比如家用电器、智能玩具、数码产品等,那么FPGA 是什么?关于FPGA你知道多少?FPGA 是什么FPGA(Field Programmable Gate Array),现场可编程门阵列,一种半定制的数字集成电路。FPGA 凭借其灵活性高、开发周期短、处理性能强(并行)等特点,广泛应用于通信、图像处理、医疗等领域。随着科技的进步,F
01  FPGA在深度学习领域有哪些优势FPGA(Field-Programmable Gate Array)是一种灵活的可编程硬件设备,它在深度学习应用领域中具有许多优势。首先,FPGA具有非常高的并行性。在深度学习中,许多计算都可以并行化,例如卷积和池化操作。FPGA的并行计算能力可以使得深度学习算法在硬件上的加速比较明显。其次,FPGA具有延迟和高带宽。在深度学习中,网络的训练和
MobileNet V2介绍MobileNetV2是在V1基础之上的改进。V1主要思想就是深度可分离卷积。而V2则在V1的基础上,引入了Linear Bottleneck 和 Inverted Residuals。下图是MobileNet V2中的一个基本模块 可以看到,该模块由三个卷积组成,第一第三个卷积是标准的1x1卷积,起到升维和降维的作用,而中间的是一个depthwise卷积,每一个卷积层
1 总体概述为避免闭门造车,找一个不错的开源项目,学习在FPGA上实现CNN,为后续的开发奠定基础1.1 项目链接大佬的开源项目链接: CNN-FPGA 链接跳转界面如下: 大佬的该项目已经发表论文,而且开源工程结构清晰,同时附带了硬件文档,所以对于咱们初学者来说,这个项目很友好发表的论文:硬件文档:1.2 项目介绍用ZYNQ FPGA搭建LeNet-5卷积神经网络(CNN),实现手写数字识别,数
  • 1
  • 2
  • 3
  • 4
  • 5