飞蛾扑火( Moth-flame optimization algorithm,MFO) 是Seyedali Mirjalili等于2015年提出的一种新型智能优化算法。该算法具有并行优化能力强,全局性优且不易落入局部极值的性能特征,逐渐引起了学术界和工程界的关注。目录1.飞蛾扑火算法描述1.1 算法步骤 2.MFO优化BP神经网络流程 3.模型介绍3.1 确定BP神经网络的拓
径向基函数(Radial Basis Function,RBF神经网络是一种传统的神经网络,于1988年首次被提出。1989年,Jackson论证了RBF神经网络对非线性连续函数的一致逼近性能。RBF神经网络有很强的逼近能力、分类能力和学习速度。其工作原理是把网络看成对未知函数的逼近,任何函数都可以表示成一组基函数的加权和,也即选择各隐层神经元的传输函数,使之构成一组基函数来逼近未知函数。RBF
目录摘要:1.BP模型神经网络模型2.粒子群优化算法(PSO)伪代码实现3.粒子群算法结合BP神经网络PSO-BP)4.程序运行结果5.本文Matlab代码摘要:BP神经网络是一种常见的多层前馈神经网络,本文通过粒子群算法(PSO)对BP神经网络网络参数进行寻优,得到最优化网络参数,并与未使用PSO的BP网络对同一测试样本进行预测,对比分析并突出PSO-BP的优越性。本文章代码可改性强,注释
BP神经网络主要用于预测和分类,对于大样本的数据,BP神经网络的预测效果较佳,BP神经网络包括输入层、输出层和隐含层三层,通过划分训练集和测试集可以完成模型的训练和预测,由于其简单的结构,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。另外,网络结构、初始连接权值和阈值的选择对网
RBF神经网络将复杂的非线性问题转化为高维特征空间,使问题转化为线性可分,避免
原创 2022-11-06 16:47:15
526阅读
目录0 知识回顾1 ACO-BP算法2 ACO-BP算法基本思路3 具体步骤4 Matlab代码实现5 运行结果6 参考文献 7 写在最后 1 ACO-BP算法 传统的BP神经网络训练采用的是误差反向传播学习算法,它的优化目标函数相对复杂,较容易出现陷人局部最优、收敛速度慢等问题[6]。由于BP神经网络的训练算法实质上是对其网络权值和阈值进行迭代调整,因此用
转载 2023-11-09 11:53:24
126阅读
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解)1.项目背景PSO是粒子群优化算法(Particle Swarm Optimization)的英文缩写,是一种基于种群的随机优化技术,由Eberhart和Kennedy于1995年提出。粒子群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其
目录一、RBF神经网络基本原理二、模型建立三、RBF网络拟合结果分析四、注意事项五、参考文献六、Matlab代码获取 一、RBF神经网络基本原理1988年Broomhead和Lowe将径向基函数(radial basis function, RBF)引入神经网络,形成了RBF神经网络RBF神经网络是一种三层的前馈网络, 其基本思想是:利用RBF作为隐单元的“基”构成隐含层空间,把低维的输入矢量
目录摘要:1.RBF神经网络介绍:2.RBF神经网络与BP神经网络的特点:3.PSO-RBF优化流程:4.实际测试及结果分析:4.1 BP神经网络测试结果4.2 RBF神经网络测试结果4.3 PSO-RBF神经网络测试结果5.本文Maltab代码:摘要:本文将粒子群算法(PSO)与径向基神经网络RBF)相结合,使用PSO优化RBF神经网络的主要参数中心值c, 宽度σ以及连接权值w。然后
内容介绍利用BP神经网络PID控制器进行优化PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。而实际工业生产过程中往往具有非线性,时变不确定性,因而难以建立精确的数学模型,应用常规PID控制器不能达到到理想的控制效果,在实际生产过程中,由于受到参数整定方法繁杂的困扰,常规PID控制器参数往往整定不良,
@目录系列文章项目简介一、粒子群算法(PSO)简介二、项目展示二、环境需求环境安装实例三、重要功能模块介绍1.数据预处理模块(data_create.py)2.定义粒子群优化算法(n_PSO.py)3.定义被优化CNN模型4.使用PSO优化CNN初始化学习率(ModelTrain.py)5.模型分类预测四、完整代码地址项目简介本文主要介绍如何使用python搭建:一个基于:粒子群优化算法(PSO
一、介绍径向基函数网络RBF网络)在matlab中有两种: rb和rbe二者区别可以参考 (2条消息) RBF神经网络通用函数 newrb, newrbe_LY-林雨的博客优点:结构简单、收敛速度快、能逼近任意非线性函数。径向基函数网络由三层构成:输入层:节点(神经元)个数等于输入的维数;隐含层:节点(神经元)个数待定;输出层:节点(神经元)个数等于输出的维数。径向基函数能使线性不可分问题变得线
径向基函数网络采用径向基函数(radial basis function,RBF)作为单隐藏层神经元激活函数的前馈神经网络叫作RBF网络,其输出层是对隐藏层神经元输出的线性组合,径向基神经网络模型可表示∶ 式中,m为隐藏层神经元个数,c和w为第i个隐藏层神经元对应数据的聚类中心和权重,p(x.c)为具有对称性的径向基函数,常用的高斯径向基函数为∶ 已证明,足够多隐藏层神经
粒子群优化神经网络算法 可以实时控制吗谷歌人工智能写作项目:神经网络伪原创粒子群算法优化RBF神经网络一般优化的是权值、阈值。单单的优化平滑参数spread可以吗? 10粒子群优化算法的参数设置。从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤:问题解的编码和适应度函数PSO的一个优势就是采用实数编码,不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题
系列文章手把手教你:人脸识别考勤系统 文章目录系列文章项目简介一、粒子群算法(PSO)简介二、项目展示二、环境需求环境安装实例三、重要功能模块介绍1.数据预处理模块(data_create.py)2.定义粒子群优化算法(n_PSO.py)3.定义被优化CNN模型4.使用PSO优化CNN初始化学习率(ModelTrain.py)5.模型分类预测四、完整代码地址 项目简介本文主要介绍如何使用pytho
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 1.项目背景灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。优点:较强的收敛性能,结构简单、需要调节的参数少,容易实现,存在能够自适应调整的收敛因子以及信息
目录全连接BP神经网络网络结构开始训练梯度下降法神经网络的训练DropOut使用tensorFlow完成实验全连接BP神经网络前馈神经网络(feedforward neural network)是最朴素的神经网络,通常我们所说的前馈神经网络有两种,一种叫反向传播网络(Back propagation Networks)也可简称为BP网络;一种叫做径向基函数神经网络(RBF Network)网络结构
本节将更加具体的介绍如何通过反向传播算法和梯度下降算法调整神经网络中参数的取值梯度下降算法主要用于优化单个参数的取值反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络模型在训练数据上的损失函数尽可能小反向传播算法数训练神经网络的核心算法,他可以根据定义好的损失函数优化参数的取值神经网络模型中参数的优化过程直接决定了模型的质量图4-11中x轴表示参数θ的取值,y轴表示损失函
摘 要 BP神经网络可以有效地对非线性系统进行逼近,但是传统的最速下降搜索方法存在收敛速度慢的问题。本文通过对常用的BP神经网络训练算法进行比较,说明了不同训练算法的适用范围,为不同场景下BP神经网络训练算法的选择提供了实验依据。 关键词:BP神经网络;训练算法;适用范围一、BP神经网络的原理 1.人工神经网络概述 人工神经网络(Artificial Neural Network,简称ANN)由大
转载 2023-07-07 20:25:03
509阅读
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值
  • 1
  • 2
  • 3
  • 4
  • 5