spark集群是依赖hadoop的。 hadoop集群搭建教程:Hadoop集群搭建教程(一)Hadoop集群搭建教程(二)Spark集群集群部署官网下载:spark官网这里要注意spark兼容的hadoop版本 接着解压:tar -zxvf spark-2.4.3-bin-hadoop2.7.tgz先在你的master节点进行spark的安装和配置,然后直接拷贝到其他节点就可以了。cd /usr
转载
2024-04-20 10:49:47
18阅读
# Spark 如何消费 Kafka
Apache Kafka 是一个分布式流数据平台,可以用于高吞吐量、可持久化、实时数据订阅和发布。Spark 是一个快速、通用、可扩展的大数据处理引擎。在本文中,我们将学习如何使用 Spark 来消费 Kafka 中的数据。
## 准备工作
在开始之前,我们需要确保以下环境已经配置好:
1. Kafka:安装并启动 Kafka 集群。
2. Spark
原创
2023-12-13 13:09:46
95阅读
本系列内容:Kafka环境搭建与测试Python生产者/消费者测试Spark接收Kafka消息处理,然后回传到KafkaFlask引入消费者WebSocket实时显示版本:spark-2.4.3-bin-hadoop2.7.tgzkafka_2.11-2.1.0.tgz------------------第3小节:Spark接收Kafka消息处理,然后回传到Kafka---------------
转载
2023-08-22 20:24:39
75阅读
Reciver方式 spark streaming通过Reciver方式获取kafka的数据实质是:在spark程序的Executor中开Reciver来接收来自kafka的数据,然后spark streaming会启动job去处理这些数据。 因为这些数据是存在内存中的,所以这种方式会容易丢失数据,如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Writ
转载
2023-08-05 00:45:26
162阅读
Kafka 0.10 与 Spark Streaming 流集成在设计上与0.8 Direct Stream 方法类似。它提供了简单的并行性,Kafka分区和Spark分区之间的1:1对应,以及对偏移量和元数据的访问。然而,由于新的集成使用了新的 Kafka consumer API 而不是简单的API,所以在使用方面有显著的差异。这个版本的集成被标记为实验性的,因此API有可能发生变
转载
2023-11-29 12:44:59
50阅读
1:Direct方式特点:1)Direct的方式是会直接操作kafka底层的元数据信息,这样如果计算失败了,可以把数据重新读一下,重新处理。即数据一定会被处理。拉数据,是RDD在执行的时候直接去拉数据。2)由于直接操作的是kafka,kafka就相当于你底层的文件系统。这个时候能保证严格的事务一致性,即一定会被处理,而且只会被处理一次。而Receiver的方式则不能保证,因为Receiver和ZK
转载
2023-12-23 17:45:13
51阅读
对接kafka 0.8以及0.8以上的版本Spark要在2.3.0一下选择较好,因为这个Spark对接kafka用这个比较稳定,1.0还是测试 导入依赖<dependency>
<groupId>org.apache.spark</groupId>
<!--0.8是kafka的版本,2.11是scala的版本
转载
2023-09-05 10:51:57
149阅读
(1)、如何实现sparkStreaming读取kafka中的数据 在kafka0.10版本之前有二种方式与sparkStreaming整合,一种是基于receiver,一种是direct,然后分别阐述这2种方式分别是什么 receiver:是采用了kafka高级api,利用receiver接收器来接受kafka topic中的数据,从kafka接收来的数据会存储在spark的executor中,
转载
2023-11-28 13:42:47
58阅读
sparkstreaming 消费kafka数据的 kafkautil 提供两种创建dstream的方法: 1 老版本的createStream方法 &
转载
2023-09-01 14:45:17
125阅读
# 从Kafka到Spark:实时流数据处理的完美组合
在当今数字化时代,数据已经成为企业最宝贵的资源之一。为了更好地利用数据,实时流数据处理技术应运而生。Kafka和Spark作为两大热门的实时流数据处理框架,因其高效、可靠和灵活性而备受青睐。本文将介绍Kafka和Spark的基本原理,并结合代码示例,展示它们如何完美地结合在一起,实现实时流数据的处理和分析。
## Kafka与Spark的
原创
2024-04-20 07:12:51
37阅读
目录前言一、Linking Denpency二、Common Writinga. 主类b. 辅类(KafkaProducer的包装类)三、OOP 方式(扩展性增强)a.Traitb.继承的Class&Traitc. Excutor Classd.Test 前言这里演示从kafka读取数据对数据变形后再写回Kafka的过程,分为一般写法和OOP写法。一、Linking Denpencypo
转载
2023-10-03 08:38:36
127阅读
场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订单收益 2)然后,spark-streaming每十秒实时去消费kafka中的订单数据,并以订单类型分组统计收益 3)最后,spark-streaming统计结果实时的存入本地MySQL。 前提条件 安装 1)spark:我使用的yarn-
转载
2024-07-18 16:54:34
67阅读
spark-streaming-kafka-demo使用Springboot框架,Sparkstreaming监听Kafka消息,Redis记录已读Kafka偏移量,Spark统计单词出现次数,最后写入Hive表。代码参考:https://github.com/JunjianS/spark-streaming-kafka-demo注意事项版本信息Kafka:2.12-2.3.0Spark:1.6.
转载
2023-09-26 21:45:13
107阅读
大数据开发-Spark-开发Streaming处理数据 && 写入KafkaSpark Streaming+Kafka spark 写入 kafkaSpark Streaming + Kafka集成指南Spark Streaming消费Kafka数据的两种方案Direct模式和基于 Receiver 接收数据不一样,这种方式定期地从 Kafka 的 topic+partition
转载
2023-08-07 22:29:07
183阅读
概述 Kafka是一个分布式的发布-订阅式的消息系统,简单来说就是一个消息队列,好处是数据是持久化到磁盘的(本文重点不是介绍kafka,就不多说了)。Kafka的使用场景还是比较多的,比如用作异步系统间的缓冲队列,另外,在很多场景下,我们都会如如下的设计:将一些数据(比如日志)写入到kafka做持久化存储,然后另一个服务消费kafka中的数据,做业务级别的分析,然后将分析结果写入HBase或者H
转载
2023-11-28 20:35:39
38阅读
背景spark streaming + kafka 有两种方案接收kafka数据-基于receiver的方案和direct方案(no receiver方案)。基于receiver的方案,属于比较老的方案,其采用Kafka’s high-level API通过专门的Rceiver去接收kafka数据。 采用 KafkaUtils.createStreamdirect方案,是当前的主流用法,其采用Ka
转载
2024-01-14 20:22:52
103阅读
SparkStreaming读Kafka:无状态流处理:object MyReadKafkaHandler {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("mytest").setMaster("local[2]")
val sc = SparkContext.ge
转载
2024-05-15 11:28:44
47阅读
接上文《Hadoop生态系统》,对Spark、Spark streaming、kafka的相关内容进行总结。1、Hadoop和Spark的关系Spark是为了跟Hadoop配合而开发出来的,不是为了取代Hadoop,专门用于大数据量下的迭代式计算。Spark运算比Hadoop的MapReduce框架快的原因是因为Hadoop在一次MapReduce运算之后,会将数据的运算结果从内存写入到磁盘中,第
转载
2023-10-14 17:11:35
142阅读
spark 连接kafka API 各参数详细讲解一 Spark连接Kafka的两种方式比较二 0.8,0.10以及更高版本的Kafka 如果spark的批次时间batchTime超过了kafka的心跳时间(30s),需要增加hearbeat.interval.ms以及session.timeout.ms。加入batchTime是5min,那么就需要调整group.max
转载
2023-09-24 20:41:27
82阅读
kafka默认提交偏移量,消费者会将偏移量默认写到特殊的topic,偏移量更新的时候,数据已经处理,但是还没有更新偏移量,再次重新启动,会重复提交偏移量,控制不够精准,无法保证数据的一致性---所有我们不让消费者自动提交偏移量 :"enable.auto.commit" -> (false: java.lang.Boolean)偏移量是描述信息,偏移量在Driver端生成在Driver获取&
转载
2023-11-24 12:41:58
67阅读