在上一篇文章中,我们介绍了KNN算法的原理,并详细阐述了使用Opencv的KNN算法模块对手写数字图像进行识别,发现识别的准确率还是比较高的,达到90%以上,这是因为手写数字图像的特征比较简单的缘故。本文我们将使用KNN来对更加复杂的CIFAR-10数据集进行识别分类,并尝试提高分类的准确率。1. CIFAR-10数据集介绍CIFAR-10是一个专门用于测试图像分类的公开数据集,其包含的彩色图像分
一.数据集制作我们用到的数据集是一个2982张关于10个汉字的图片库,下载地址:链接:https://pan.baidu.com/s/1NqjYlRRizf4zzl0TjhgvOA 提取码:hpgj 我们通过PIL库读取图片数据,并生成标签,最终得到一个2982*784的图片数据集和2982*10的标签列表。一下是代码:path_ = 'E:\\中文字符识别\\' classes = ['0',
一:CRNN简介网络结构:CNN + RNN + CTC网络编码:当输入一张尺寸归一化的图片 [32, 280, 3] ,其中32代表文本图片高度,280代表文本图片宽度,3代表文本图片通道数;经过CNN特征编码之后,高度5次2倍下采样变成1,宽度3次2倍下采样变成35,通道经过卷积变成512,最终CNN输出特征 [1, 35, 512];以此特征输入RNN网络,以35作为序列步长,通道数最终输出
AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。虽然时隔多年,但AlexNet经典依旧,本文就简单回顾一下AlexNet的网络结构。一、AlexNet网络结构由于当时硬件资源的限制,Hinton使用了两块GPU对AlexNet训练,即把输入数据均分成
在深度学习入门的过程中,卷积神经网络(Convolutional Neural Netwok, CNN)模型的学习是必不可少的,CNN是深度学习理论和方法中的重要组成部分。为了更好的学习到卷积神经网络的应用,将通过卷积神经网络模型在图像识别领域的应用来入门。**应用背景:**本项目将通过识别手写的“对”、“错”图像,也就是常说的“√”“×”,训练数据保存在’checkData.txt’文件中。ch
简介 图1:论文原文 上一篇博文简要介绍了文本检测领域较为经典的一篇文章,。本文将继续介绍文本识别领域较为经典的一项工作,。一般来说,在自然场景中进行文字识别主要包括以下步骤:文字检测,即找到图像中文字的大致范围,如上文CTPN的检测结果;文字识别,对定位好的文字区域进行识别,输出文字的具体内容。一般情况下,二者都是基于+的基本结构。而本文介绍的是一种能够以端到端的方式训练的模型,且可以识别任意长
本文利用dlib库进行人脸识别与特征标定,并利用嘴巴的张开比例,眼睛的睁开程度,眉毛的倾斜程度作为表情分析的三个指标。方法较为简单,识别的效率不是很高,可以在此基础上进行改善。识别规则:1. 嘴巴张开距离占面部识别框宽度的比例越大,说明情绪越激动,可能是非常开心,也可能是极度愤怒。2. 眉毛上扬,17-21 或者 22-26 号特征点距离面部识别框顶部与识别框高度的比值越小,说明眉毛上扬越厉害,可
转载 2024-02-21 12:47:48
102阅读
  现代办公要将纸质文档转换为电子文档的需求越来越多,目前针对这种应用场景的系统为OCR系统,也就是光学字符识别系统,例如对于古老出版物的数字化。但是目前OCR系统主要针对文字的识别上,对于出版物的版面以及版面文字的格式的恢复,并没有给出相应的解决方案。对于版面恢复中主要遇到的困难是文字字体的恢复。对于汉字字体识别问题,目前主要有几种方法,但是都是基于人工特征提取的方法。以往的方法主要分为两大类,
译者按: 祖师爷Hinton 带领的小组经典之作,深度学习开山祖师 Hinton率领的谷歌团队多次夺冠 ,主力成员为 hinton 在多伦多大学的学生  Alex Krizhevsky  , Ilya Sutskever  ,  因此他们的解决方案也叫alexnet  , 这篇文章是hinton大神团队的代表性之作,CNN (卷积神经网络
0. 滴不尽相思血泪抛红豆    上一节讲述了如何通过CNN提取一幅图像的特征后,并将提取的“滤镜”应用于另外一幅图像。其实利用CNN产生这种艺术作品的应用和论文还有很多,例如google著名的DeepDream,它利用以及训练好的网络(例如一个二分类猫狗的网络),识别任意图片(例如一朵云的图片)后将其判别为猫或者狗,并将猫狗的特征复刻到云朵照片上,使计算机“做梦”一样,看到云
CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题。 文章认为文字识别是对序列的预测方法,所以采用了对序列预测的RNN网络。通过CNN图片的特征提取出来后采用RNN对序列进行预测,最后通过一个CTC的翻译层得到最终结果。 说白了就是CNN+RNN+CTC的结构。 CRNN 全称为 Convolutional Recurrent Neural Network
浅谈通信信号调制样式自动识别方法 -古相平 程磊, 葛临东, 彭华,等. 通信信号调制识别现状与发展动态[J]. 微计算机信息, 2005, 021(10S):154-156. 曾创展, 贾鑫, 朱卫纲. 通信信号调制方式识别方法综述[J]. 通信技术, 2015(03):252-257. 1bit =6db概念通信信号的调制识别是指在未知调制信息内容以及调制参数的前提下,判断出信号所采用的调制方
卷积神经网络概述 卷积神经网络是一种前馈多层网络,信息的流动只有一个方向,即从输入到输出,每个层使用一组卷积核执行多个转换。CNN 模型主要包含卷积层、池化层、全连接层。以 CNN模型为基础,将多层卷积和多层池化结合产生新的网络模型,可提高网络结构的准确度。经典的卷积神经网络模型GoogLeNet、AlexNet、VGGNet 等。 利用 CNN 进行图像识别将图像直接输入到模型,不需要传统算法中
一、卷积1.为什么要引入卷积层?因为全连接层输入图像时,会将图像的3维数据拉平为1维数据,而图像是3维形状,这个形状中可能包含重要的空间信息。比如,空间上邻近的像素为相似的值、RGB的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,所以使用全连接层可能会忽略掉一些空间信息,进而造出最后的预测结果不准确。卷积层则可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入
CNN结构CNN(卷积神经网络)主要包括卷积层、池化层和全连接层。输入数据经过多个卷积层和池化层提取图片信息后,最后经过若干个全连接层获得最终的输出。CNN的实现主要包括以下步骤:数据加载与预处理模型搭建定义损失函数、优化器模型训练模型测试以下基于Pytorch框架搭建一个CNN神经网络实现手写数字识别CNN实现此处使用MNIST数据集,包含60000个训练样本和10000个测试样本。分为图片
深度神经网络实现验证码识别前段时间接到了一个小项目,要做一个验证码的识别,验证码包含数字和英文字母,实现识别的过程用到了CNN网络,最后单个字符的准确率达到90%以上。准备数据集登录界面有一个验证码的网址,直接用代码向服务器请求了一万张二维码下来。 图像处理 先把图片二值化,然后切割成单个的字符。#将验证码切割保存到每个数据标签文件夹 t=2 n=13 for i in xs_o: pho
转载 2024-07-17 14:18:05
128阅读
1 线性分类器简介2 线性评分函数3 损失函数 3.1 多类SVM3.2 Softmax分类器3.3 SVM和Softmax的比较4 基于Web的可交互线性分类器原型5 小结1 线性分类图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像。我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想是通过将测试图像与训练集带标签的图像进行比较,来
转载 2024-07-12 00:23:58
46阅读
我们已经陆续介绍了几种算法,例如LPA;但是,直到现在,我们还是强调图算法用于一般性图分析。由于图在机器学习(ML)中的应用越来越多,我们现在将研究如何使用图算法来增强ML的工作流程。在本章中,我们重点介绍用图算法改进机器学习的最实用办法:提取连接相关的特征,并用于在关系预测。首先,我们将介绍一些基本的ML概念,并了解对提升预测的上下文数据的重要性。然后,我们将快速了解图功能的应用方式,包括用于垃
图像文本识别的步骤一般为图像预处理,图片切割,特征提取、文本分类和图像文本输出几个步骤,我们也可以按这个步骤来识别图像中的数字。一、图像预处理在图像预处理中,验证码识别还要对图像进行去燥,文字还原等比较复杂的处理,由于我的图像没什么干扰因素,所以直接对其进行二值处理即可。处理结果如下:因为图片上的数据灰度值都是75或76,所以只需把灰度值等于75或76的赋为1,其余的为0即可,代码如下:defpr
目录1. MobileNet1.1 MobileNet v11.1.1 深度可分离卷积 1.1.2 宽度和分辨率调整1.2 MobileNet v21.2.1 倒残差模块1.3 MobileNet v31.3.1 MobieNet V3 Block 1.3.2 MobileNet V3-Large网络结构1.3.3 MobileNet V3预测猫狗二分类问题
  • 1
  • 2
  • 3
  • 4
  • 5