给你一个 n * n 矩阵 grid ,矩阵由若干 0 和 1 组成。请你用四叉树表示该矩阵 grid 。

你需要返回能表示矩阵 grid 的 四叉树 的根结点。

四叉树数据结构中,每个内部节点只有四个子节点。此外,每个节点都有两个属性:

  • val:储存叶子结点所代表的区域的值。1 对应 True,0 对应 False。注意,当 isLeaf 为 False 时,你可以把 True 或者 False 赋值给节点,两种值都会被判题机制 接受 。
  • isLeaf: 当这个节点是一个叶子结点时为 True,如果它有 4 个子节点则为 False 。
class Node {
    public boolean val;
    public boolean isLeaf;
    public Node topLeft;
    public Node topRight;
    public Node bottomLeft;
    public Node bottomRight;
}

我们可以按以下步骤为二维区域构建四叉树:

  1. 如果当前网格的值相同(即,全为 0 或者全为 1),将 isLeaf 设为 True ,将 val 设为网格相应的值,并将四个子节点都设为 Null 然后停止。
  2. 如果当前网格的值不同,将 isLeaf 设为 False, 将 val 设为任意值,然后如下图所示,将当前网格划分为四个子网格。
  3. 使用适当的子网格递归每个子节点。

如果你想了解更多关于四叉树的内容,可以参考 wiki 。

四叉树格式:

你不需要阅读本节来解决这个问题。只有当你想了解输出格式时才会这样做。输出为使用层序遍历后四叉树的序列化形式,其中 null 表示路径终止符,其下面不存在节点。

它与二叉树的序列化非常相似。唯一的区别是节点以列表形式表示 [isLeaf, val] 。

如果 isLeaf 或者 val 的值为 True ,则表示它在列表 [isLeaf, val] 中的值为 1 ;如果 isLeaf 或者 val 的值为 False ,则表示值为 0 。

示例 1:

[leetcode] 427. 建立四叉树_子网

输入:grid = [[0,1],[1,0]]
输出:[[0,1],[1,0],[1,1],[1,1],[1,0]]
解释:此示例的解释如下:
请注意,在下面四叉树的图示中,0 表示 false,1 表示 True 。

[leetcode] 427. 建立四叉树_leetcode_02

示例 2:

[leetcode] 427. 建立四叉树_职场和发展_03

输入:grid = [[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0],[1,1,1,1,0,0,0,0]]
输出:[[0,1],[1,1],[0,1],[1,1],[1,0],null,null,null,null,[1,0],[1,0],[1,1],[1,1]]
解释:网格中的所有值都不相同。我们将网格划分为四个子网格。
topLeft,bottomLeft 和 bottomRight 均具有相同的值。
topRight 具有不同的值,因此我们将其再分为 4 个子网格,这样每个子网格都具有相同的值。

[leetcode] 427. 建立四叉树_leetcode_04

提示:

  1. n == grid.length == grid[i].length
  2. n == 2x 其中 0 <= x <= 6

Python代码

"""
# Definition for a QuadTree node.
class Node:
    def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
        self.val = val
        self.isLeaf = isLeaf
        self.topLeft = topLeft
        self.topRight = topRight
        self.bottomLeft = bottomLeft
        self.bottomRight = bottomRight
"""

class Solution:



    def construct(self, grid: List[List[int]]) -> 'Node':
        if not grid:
            return None

        if self.isLeaf(grid):
            return Node(grid[0][0]==1, True, None, None, None, None)
        n = len(grid)
        return Node('*', False,
         self.construct([row[:n//2] for row in grid[:n//2]]),
         self.construct([row[n//2:] for row in grid[:n//2]]),
         self.construct([row[:n//2] for row in grid[n//2:]]),
         self.construct([row[n//2:] for row in grid[n//2:]])
         )

    def isLeaf(self, grid):
        n = len(grid)
        for i in range(n):
            for j in range(n):
                if grid[i][j]!=grid[0][0]:
                    return False
        return True